Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Интегродифференциальное уравнение Фредгольма

Математика
11.12.2023
9
Поделиться
Библиографическое описание
Гурбанмаммедов, Нурмухаммет. Интегродифференциальное уравнение Фредгольма / Нурмухаммет Гурбанмаммедов, П. Н. Гурбанмаммедов. — Текст : непосредственный // Молодой ученый. — 2023. — № 49 (496). — С. 4-11. — URL: https://moluch.ru/archive/496/108858/.


В работе рассматриваются следующие задачи:

где

1. Однозначная разрешимость

В этом пункте находятся достаточные условия однозначной разрешимости задачи .

В пространстве используется норма

.

Теорема 1. Пусть непрерывные функции,

удовлетворяют условию:

где

,

Если существует удовлетворяющая неравенству

, тогда задача имеет единственное решение в пространстве .

Доказательство.

Очевидно, что задача (1) — (4) эквивалентна интегрофункциональному уравнению:

Пусть

Очевидно, что . Теперь докажем, что оператор сжимающий. имеем:

Используя норму (5), имеем:

где Доказательство теоремы 1 следует из принципа сжимающих отображений.

2. Непрерывная зависимость решения от параметров

Следующая задача:

где

параметр.

Теорема 2. Пусть, непрерывные функции

удовлетворяют условию:

где

Если существует , удовлетворяющая неравенству , тогда единственное решение задачи (1) — (4) непрерывно зависит от параметров.

Доказательство. При фиксированных параметрах однозначной разрешимости задача доказана в теореме 1.

Задача эквивалентна следующему интегральному уравнению:

Обозначим через решение уравнение , соответствующее параметрам и . Имеем

Имеем:

Отсюда следует утверждение теоремы 2.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №49 (496) декабрь 2023 г.
Скачать часть журнала с этой статьей(стр. 4-11):
Часть 1 (стр. 1-75)
Расположение в файле:
стр. 1стр. 4-11стр. 75

Молодой учёный