Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Конечность одномерного интеграла, зависящего от параметра

Математика
18.04.2017
40
Поделиться
Библиографическое описание
Бахшуллаева, М. Ш. Конечность одномерного интеграла, зависящего от параметра / М. Ш. Бахшуллаева. — Текст : непосредственный // Молодой ученый. — 2017. — № 15 (149). — С. 102-104. — URL: https://moluch.ru/archive/149/41671/.


Пусть — некоторая аналитическая функция на . Определим регулярную функцию

.

Задача состоит из определения функции в точках и . Обычно такие задачи возникают при изучении пороговых явлений в спектре модели Фридрихса и их обобщений [1].

Очевидно, что

,

.

Из определения функции видно, что оно монотонно возрастает в интервалах и . Из теоремы о предельном переходе под знаком интеграла Лебега [2] следует, что существуют конечные или бесконечные интегралы

,

.

Для любого и положим

.

Тогда имеет место соотношение

.

Отметим, что если , то из аналитичности функции в следует, что существуют положительные числа и такие, что имеет место неравенство

(1)

для некоторого . В силу непрерывности функции на компактном множестве , существует число такое, что имеет место неравенство

(2)

при всех . Так как функция имеет невырожденный минимум в точке , для найденных положительных и также имеет место неравенства

, (3)

. (4)

Для определенности предположим, что . Тогда имеет место равенство

. (5)

Учитывая неравенства (2) и (4) для первого и третьего слагаемого стоящей в правой части равенства (5) имеем

,

.

Далее, учитывая неравенства (1) и (3), для второго слагаемого стоящей в правой части равенства (5) имеем

.

Таким образом, если , то

.

Пусть теперь . В этом случае силу непрерывности функции существуют положительные числа и такие, что при всех . Учитывая этот факт и неравенства (3) получим, что

.

Таким образом, в случае имеет место соотношение

.

Рассуждая аналогично можно указать условия существования интеграла

.

Пусть – гильбертово пространство квадратично-интегрируемых (комплекснозначных) функций, определенных на . В рассмотрим ограниченный самосопряженный модель Фридрихса

.

Для этой модели определитель Фредгольма имеет вид

.

Изложенные факты в этой работе играют важную роль при изучении спектральных свойств оператора , т. е. модели Фридрихса.

Литература:

  1. S.Albeverio, S. N. Lakaev, Z. I. Muminov. The threshold effects for a family of Friedrichs model under rank one perturbations. Journal of Mathematical Analysis and Applications. 330 (2007), P. 1152–1168.
  2. А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа. М. «Наука». 1981.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №15 (149) апрель 2017 г.
Скачать часть журнала с этой статьей(стр. 102-104):
Часть 2 (стр.101-215)
Расположение в файле:
стр. 101стр. 102-104стр. 215

Молодой учёный