Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Исследование трещиностойкости геополимерного бетона

Технические науки
16.05.2015
487
Поделиться
Библиографическое описание
Ерошкина, Н. А. Исследование трещиностойкости геополимерного бетона / Н. А. Ерошкина, С. В. Аксенов, М. О. Коровкин, Е. Н. Полубаров. — Текст : непосредственный // Молодой ученый. — 2015. — № 10 (90). — С. 203-205. — URL: https://moluch.ru/archive/90/19058/.

Представлены результаты исследования механических свойств и трещиностойкости бетона на основе геополимерного вяжущего на базе измельченного отхода дробления гранитного щебня с добавкой гранулированного шлака. Показано, что увеличение в вяжущем добавки шлака с 20 до 30 % существенно повышает прочность, модуль упругости и трещиностойкость геополимерного бетона.

Ключевые слова: геополимер, минерально-щелочное вяжущее, шлакощелочное вяжущее, бетон, щелочная активация, механические свойства, трещиностойкость.

 

Вяжущие щелочной активации (геополимеры, шлакощелочные, минерально-щелочные) в настоящее время многими учеными считаются современной альтернативой цементу и активно развиваются [1-5]. Опыт использования геополимерных и шлакощелочных материалов показал, что они обладают высокими эксплуатационными характеристиками: прочностью, коррозионной стойкостью, морозостойкостью, огнестойкостью. Прогнозируется высокая долговечность и надежность конструкций из таких материалов [2, 3].

Несмотря на большое число всесторонних исследований различных видов вяжущих щелочной активации многие вопросы их твердения и поведения в процессе эксплуатации остаются до конца не выясненными. К числу этих вопросов относится трещиностойкость таких вяжущих.

По трещиностойкости вяжущих щелочной активации имеется много противоречивых данных. Отмечается, что разрушение носит более пластичный характер и поэтому бетон лучше работает на растяжение [2, 3]. С другой стороны, имеются данные о том, что в ряде случаев геополимерные и шлакощелочные бетоны проявляют низкую трещиностойкость.

До сих пор нет единого мнения, от каких факторов зависит трещиностойкость бетонов на основе активированных щелочью вяжущих, что сдерживает, в конечном счете, и их применение как конструкционных материалов.

Бетоны на основе новой разновидности бесклинкерных геополимерных вяжущих на базе магматических горных пород характеризуются высокими физико-механическими свойствами, не уступающими свойствам бетонов, изготовленных с применением портландцемента [4, 5].

Для исследований были изготовлены 3 состава геополимерного мелкозернистого бетона с расходом доменного шлака — 20, 25 и 30 % от веса вяжущего. В качестве вяжущего использовалось вяжущее, полученное на основе измельченных до удельной поверхности 350 м2/кг гранита Павловского месторождении и доменного гранулированного шлака Новолипецкого металлургического комбината. Для активации твердения вяжущего применялось растворимое жидкое стекло, содержание которого варьировалось расходом шлака и во всех составах вяжущего на 2,1 части шлака приходилась 1 часть стекла. В качестве активатора твердения в смесь с водой затворения вводилось натриевое жидкое стекло с Мс=1,4 при содержании силиката натрия 47 %. В качестве мелкого заполнителя применялся песок Чаадаевского месторождения, просеянный через сито 0,63 мм (Пензенская область) при соотношении вяжущее: песок равном 1:2.

Исследование трещиностойкости мелкозернистого бетона проводилось по методике стандарта [6], с помощью измерительно-вычислительном комплекса «АСИС-1» производства НПП «ГЕОТЕК» [7] с оснасткой для испытания на изгиб.

Из каждого состава бетона изготавливалось по 6 образцов-призм размером 40×40×160 см (тип 1 [6]). Начальные надрезы в образцах получали при их формовании путем закладывания стальной пластины толщиной 0,5 мм. После изготовления образцы твердели в течение 28 суток в нормальных условиях, затем высушивались и подвергались испытаниям.

По результатам равновесных испытаний определялись следующие характеристики трещиностойкости: коэффициент интенсивности напряжений (K — вязкость разрушения), удельные энергозатраты (G) и J- интеграл [6].

После испытаний на трещиностойкость две половинки образца испытывали на прочность при сжатии (Rсж), прочность при изгибе (RBtf) [6]. Значение модуля упругости (Еб) рассчитывали исходя из величины прогиба (f), образуемого при действии на образец нагрузки (Fс) соответствующей, началу движения магистральных трещин по формуле

,

где Iк — момент инерции (, b, h — ширина и высота образца в м).

Диаграммы равновесных испытаний бетона, приведенные на рис. 1, свидетельствуют о том, что с повышением расхода шлака зона образования пластических деформаций бетона сдвигается с 0,039 до 0,066 мм. При разгружении образцов до 170 Н характер развития пластических деформаций образцов с наибольшим и с наименьшим расходом шлака становится одинаковым, что свидетельствует о преждевременном разрушении менее прочного состава бетона.

Рис. 1. Диаграмма состояния мелкозернистого бетона с различным содержанием шлака в вяжущем

 

Данные рис. 2а показывают, что в составах бетона с ростом расхода шлака одновременно с прочностью при сжатии и изгибе, возрастает модуль упругости бетона, а также повышается трещиностойкость бетона, что видно по увеличению энергии, приходящейся на образование магистральных трещин — Gi, и высвобождение энергии при разрушении бетона GF. Коэффициент интенсивности — вязкость разрушения бетона на геополимерном вяжущем возрастает с 0,42 до 0,5 МПа×м 0,5 (рис.2.б).

а)

б)

Рис. 2. Прочность при сжатии и изгибе, модуль упругости (а) и параметры трещиностойкости (б) геополимерного бетона в зависимости от рахода шлака

 

Выводы

Исследованы характеристики трещиностойкости мелкозернистых бетонов, изготовленных с применением новой разновидности вяжущих щелочной активации — геополимерного вяжущего. Установлены параметры разрушения бетона в соответствии с ГОСТ 29167–91. Выявлены зависимости основных характеристик трещиностойкости бетона от доли шлака в вяжущем.

По деформативно-прочностным характеристикам и трещиностойкости геополимерные бетоны сопоставимы со шлакощелочными и портландцементными бетонами.

 

Литература:

 

1.       Davidovits, J. Geopolymer chemistry and sustainable Development. The Poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry / J. Davidovits // Proceeding of the world congress Geopolymer 2005. France,Saint –Quentin, 2005. — Р. 9–15.

2.       Глуховский, В. Д. Шлакощелочные цементы и бетоны / В. Д. Глуховский, В. А. Пахомов. — Киев: Будивельник, 1978. — 184с.

3.       Sumajouw, D. M. Fly ash-based geopolymer concrete: study of slender reinforced columns [Текст] / D. M. Sumajouw, J. D. Hardjito, S. E.Wallah, B. V. Rangan / Journal of Materials Science. — 2007. — Vol. 42, N. 9. — Р. 3124–3130.

4.       Ерошкина, Н. А. Ресурсосберегающие технологии геополимерных вяжущих и бетонов на основе отходов добычи и переработки магматических горных пород: монография / Н. А. Ерошкина, М. О. Коровкин. — Пенза: Изд-во ПГУАС, 2013. — 152 с.

5.       Ерошкина, Н. А. Геополимерные вяжущие на базе магматических горных пород и бетоны на их основе / Н. А. Ерошкина, М. О. Коровкин // Цемент и его применение. – 2014. — № 4. — С. 107–113.

6.       ГОСТ 29167–91. Бетоны. Методы определения характеристик трещиностойкости (вязкости разрушения) при статическом нагружении.

7.       Устройство компрессионного сжатия [Электронный ресурс] / режим доступа: http://www.npp-geotek.ru/catalog/info/compression/

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
геополимер
минерально-щелочное вяжущее
шлакощелочное вяжущее
бетон
щелочная активация
механические свойства
трещиностойкость.
Молодой учёный №10 (90) май-2 2015 г.
Скачать часть журнала с этой статьей(стр. 203-205):
Часть 2 (cтр. 109 - 249)
Расположение в файле:
стр. 109стр. 203-205стр. 249

Молодой учёный