Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Исследование свойств геополимерных вяжущих при длительном твердении

Технические науки
18.04.2015
93
Поделиться
Библиографическое описание
Полубаров, Е. Н. Исследование свойств геополимерных вяжущих при длительном твердении / Е. Н. Полубаров, Н. А. Ерошкина, М. О. Коровкин. — Текст : непосредственный // Молодой ученый. — 2015. — № 8 (88). — С. 289-292. — URL: https://moluch.ru/archive/88/17644/.

Приведены результаты исследования прочности и усадки геополимерного вяжущего на основе измельченного отсева дробления габбро-диабаза при длительном твердении. Показано, что исследованное вяжущее после твердения во влажных условиях способно набирать прочность в сухих условиях при длительном твердении.

Ключевые слова: минерально-щелочное вяжущее, геополимерное вяжущее, магматическая горная порода, доменный шлак.

 

В последнее время в России и за рубежом выполнено большое число исследований по разработке новых разновидностей и совершенствованию шлакощелочных, геополимерных и других вяжущих, получаемых при щелочной активации шлаков и алюмосиликатных пород [1, 2]. В Пензенском ГУАС получены геополимерные вяжущие на основе отходов добычи и переработки алюмосиликатных магматических горных пород и шлаков [3–5]. Эти вяжущие обладают высокой прочностью, водостойкостью и низким водопоглощением при длительном выдерживании образцов в воде [2, 4]. Изменение свойств геополимерных вяжущих при эксплуатации в воздушно-сухих условиях является малоизученной проблемой. В данной работе были проведены исследования по оценке влияния воздушно-сухих условий на изменение прочности и усадочные деформации геополимерного вяжущего.

Методы и материалы

Исследования проводились в 2 этапа. На первом этапе были изучены свойства образцов после твердения в нормально-влажностных условиях. На втором этапе образцы находились в воздушно-сухих условиях лаборатории с температурой 17–25 оС и влажностью 60–80 % в течение 11 месяцев.

Вяжущие изготавливались из шлака и отсева дробления габбро-диабаза, измельченных до дисперсности 380 и 500 м2/кг, соответственно. Для активизации процесса твердения использовались щелочные активаторы: товарное жидкое стекло на натриевой основе (Щ1) и NaOH (Щ2). Содержание указанных компонентов в составе вяжущего назначалось в соответствии с планом четырехфакторного рототабельного эксперимента. В качестве факторов были исследованы: х1 — содержание шлака по отношению к габбро-диабазу (Ш/Г), х2 — отношение активатора Щ1 к твердому компоненту вяжущего (Щ1/Т), х3 — отношение жидкой составляющей к твердому (Ж/Т) и х4 — содержание щелочи Щ2. Основные уровни и интервалы варьирования для факторов были назначены следующие: x1 = 3±1; x2 = 21±5; x3 = 3±0,3; x4 = 3±1.

Исследование прочностных свойств проводилось на образцах с размерами 20´20´20 мм, а измерение усадочных деформаций — на образцах с размерами 20´20´100 мм, изготовленных из растворных смесей при соотношении вяжущего к растворной части 1:1.

Результаты и их обсуждение

После статистической обработки влияния исследованных факторов на прочность вяжущего в возрасте 28 суток было составлено уравнение R28= 44,74–7,125·x1+ 5,1583·x2+ 1,9833·x3 + 3,6·x4–1,3125·x1·x2–1,8875·x1·x4–3,0875·x2·x3 + 4,0875·x3·x4–2,3728·x32–3,1478·x42. Из уравнения видно, что прочность возрастает с увеличением содержания в смеси шлака, активатора Щ1 и Щ2, и с уменьшением содержания Ж/Т. Однако, последний из указанных факторов в меньшей степени влияет на повышение прочности. Графическая интерпретация уравнения приведена на рис. 1.

Рис. 1. Прочность через 28 суток, МПа

 

Рис. 2. Прочность при твердении в воздушно-сухих условиях, МПа

 

Прочность вяжущего при последующем твердении в сухих условиях лаборатории описывается зависимостью R = 56,112–8,1·x1+10,508·x2 + 8,7·x3 + 1,8667·x4 + 1,9125·x2·x3 –1,1375·x2·x4. В соответствии с уравнением наибольшее влияние на прочность оказывает содержание щелочного активатора Щ1 и примерно одинаковое влияние — содержание шлака и жидкой составляющей, а содержание щелочи Щ2 оказывает на прочность незначительное влияние. Наглядно характер формирования прочности вследствие адсорбции влаги из окружающей среды лаборатории показан на рис. 2. Прирост прочности по отношению к прочности, достигнутой на 28 сутки, в составах с наименьшим количеством шлака (Ш/Г=3,6–4) и Щ11/Т≤16 %) достигает 100 %, а в составах с наибольшим количеством шлака и жидкого стекла составляет 60 %.

Деформации усадки вяжущего в возрасте 28 суток при твердении в нормально-влажностных условиях описываются уравнением ξ = 0,5292 + 0,54375·x1–1,962·x2–0,419·x3–0,4319·x1·x2 + 0,2494·x1·x3 + 0,2444 x2·x3–0,4669·x2·x4 –0,3931·x3·x4–0,4197·x22 –0,386·x32–0,3072·x42. Анализ уравнения показывает, что на развитие усадки наибольшее влияние оказывают содержание активатора жидкого стекла и отношение жидкости к твердому веществу. На рис. 3 показан график зависимости усадки от Щ1/Т и Ж/Т. С уменьшением отношений Щ1/Т и Ж/Т усадка возрастает с 0,3 до 0,7 мм/м.

Рис. 3. Усадка геополимерного вяжущего через 28 суток твердения, мм/м

 

При дальнейшем твердении образцов вяжущего в воздушно-сухих условиях усадочные деформации возрастают и достигают на 60 сутки значений 0,8–1,1 мм/м (рис. 4).

Рис. 4. Усадка через 60 суток твердения в воздушно-сухих условиях лаборатории, мм/м

 

Развитие усадочных деформаций геополимерного вяжущего продолжается в течение года. К этому времени в зависимости от соотношений Щ1/Т и Ж/Т образцы вяжущих имеют усадку в интервале от 0,7 до 1,3 мм/м (рис. 5).

Рис. 5. Усадка через 360 суток твердения в воздушно-сухих условиях, мм/м

 

Заключение

В ходе эксперимента было показано, что геополимерное вяжущее на основе габбро-диабаза с добавкой шлака способно набирать прочность не только в нормально-влажностных условиях, но и в воздушно-сухих условиях при длительном твердении. Эта особенность вяжущего может служить своего рода гарантией его долговечности.

 

Литература:

 

1.         Davidovits, J. High-Alkali Cements for 21st Century Concretes / J. Davidovits // Concrete Technology, Past, Present and Future: proceedings of Symposium. 1994. Р. 383–397.

2.         Davidovits, J. Geopolymer chemistry and applications. 3rd eddition. — France, Saint-Quentin: Institute Geopolymer, 2011. — 614 p.

3.         Ерошкина, Н. А. Вяжущее, полученное из магматических горных пород с добавкой шлака, и бетон на его основе / Н. А. Ерошкина, В. И. Калашников, М. О. Коровкин // Региональная архитектура и строительство. 2011. № 2. С. 62–65.

4.         Ерошкина, Н. А. Геополимерные вяжущие на базе магматических горных пород и бетоны на их основе / Н. А. Ерошкина, М. О. Коровкин // Цемент и его применение. 2014. № 4. С. 107–113.

5.         Ерошкина, Н. А. Исследование вяжущих, полученных при щелочной активизации магматических горных пород / Н. А. Ерошкина // Строительство и реконструкция. 2011. № 1. С. 61–65.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
минерально-щелочное вяжущее
геополимерное вяжущее
магматическая горная порода
доменный шлак.
Молодой учёный №8 (88) апрель-2 2015 г.
Скачать часть журнала с этой статьей(стр. 289-292):
Часть 3 (cтр. 239 - 349)
Расположение в файле:
стр. 239стр. 289-292стр. 349

Молодой учёный