Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Параметрическая идентификация уравнений движения методом наименьших произведений

Технические науки
11.03.2015
173
Поделиться
Библиографическое описание
Нашивочников, В. В. Параметрическая идентификация уравнений движения методом наименьших произведений / В. В. Нашивочников, И. А. Гарькина. — Текст : непосредственный // Молодой ученый. — 2015. — № 6 (86). — С. 191-193. — URL: https://moluch.ru/archive/86/16256/.

Рассматривается приложение метода наименьших произведений к параметрической идентификации уравнений короткопериодической составляющей продольного движения.

Ключевые слова:динамические системы, параметрическая идентификация, продольного движение, метод наименьших произведений, приложения.

 

Метод наименьших квадратов условно можно рассматривать как метод наименьших дисперсий; при этом метод наименьших произведений — методом наименьших спектральных плотностей. Их эквивалентами во временной области являются корреляционные функции. Нетрудно видеть, что метод наименьших квадратов является частным случаем метода наименьших произведений, когда отсчет значений фазовых координат производится в одной и той же точке. Метод представляет значительный интерес в силу большей общности по сравнению с методом наименьших квадратов. Однако до сего времени не имеет широкого распространения.

Недостатки метода наименьших произведений присущи всем известным методам спектральной теории случайных функций.

Рассмотрим приложение метода наименьших произведений к решению задачи параметрической идентификации продольного движения, а именно определению коэффициентов уравнений движения:

,

,

где  — фазовые координаты,

- управляющее воздействие.

Откуда

,

.

Здесь

;

,

.

Введем

, , ;

, , .

По данным нормального функционирования можно получить значения .

Коэффициенты  ищутся из условия минимума  (критерии обработки экспериментальных данных; при  получим метод наименьших квадратов):

,

.

Должны иметь

,,.

Откуда следует:

,

,

.

Аналогично определятся .

Из первого соотношения получим:

Для эргодических процессов будем иметь:

,

.

Поступая аналогично, получим еще три уравнения.

В итоге получим систему:

,

,

.                                      (1)

Для определения  получим точно такую же систему, но с правыми частями, соответственно равными

,

,

.                                                                                                               (2)

В общем случае сигналы  содержат помехи.

Так что:

,

;

,

.

При некоррелированных помехах будем иметь:

,

,

.

Как видим, в составляющих от помех содержатся только автокорреляционные функции, но не содержатся взаимные. Поэтому найдется , такое, что , а  еще достаточно велико. Поэтому решения систем (1) и (2) при  дадут состоятельные оценки для коэффициентов .

Метод широко использовался при разработке тренажных и обучающих комплексов для подготовки операторов и показал свою эффективность [1…7].

 

Литература:

 

1.                  Тюкалов Д. Е., Данилов А. М. Моделирование и подготовка операторов транспортных эргатических систем / Молодой ученый. — 2015. — № 3 (83). — С. 247–249.

2.                  Гарькина И. А., Данилов А. М., Пылайкин С. А. Имитаторы движения транспортных средств /Альманах современной науки и образования. — 2013. — № 7 (74). — С. 40–42.

3.                  Гарькина И. А., Данилов А. М., Пылайкин С. А. Практические методы идентификации транспортных эргатических систем / Альманах современной науки и образования. — 2013. — № 8 (75). — С. 50–52.

4.                  Данилов А. М., Гарькина И. А., Будылина Е. А. Практические методы идентификации эргатической системы / Отраслевые аспекты технических наук. — 2013. — № 6 (30). — С. 03–05.

5.                  Нугаев А. С., Данилов А. М. Управление в пространстве: оценка зависимостей выходных координат объекта в замкнутой системе / Вестник магистратуры. — 2014. — № 11–1 (38). — С. 27–30.

6.                  Нугаев А. С., Данилов А. М. Оценка качества объекта управления эргатической системы: функционал качества, определение весовых констант / Вестник магистратуры. — 2014. — № 12–1 (39). — С. 16–19.

7.                  Будылина Е. А., Гарькина И. А., Данилов А. М. Моделирование с позиций управления в технических системах // Региональная архитектура и строительство. –2013. — № 2. — С. 138–142.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
динамические системы
параметрическая идентификация
продольного движение
метод наименьших произведений
приложения.
Молодой учёный №6 (86) март-2 2015 г.
Скачать часть журнала с этой статьей(стр. 191-193):
Часть 2 (cтр. 105 - 231)
Расположение в файле:
стр. 105стр. 191-193стр. 231

Молодой учёный