Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

(B,C)-Резольвента фредгольмова оператора с двумерным ядром

Математика
30.07.2020
49
Поделиться
Библиографическое описание
Усков, В. И. (B,C)-Резольвента фредгольмова оператора с двумерным ядром / В. И. Усков. — Текст : непосредственный // Молодой ученый. — 2020. — № 31 (321). — С. 4-7. — URL: https://moluch.ru/archive/321/72927/.


Для линейного фредгольмова оператора с нулевым индексом в частном случае двумерного ядра получена формула его (B,C)-резольвенты.

Ключевые слова: линейные операторы, фредгольмов оператор, банахово пространство, резольвента.

  1. Необходимые сведения

Пусть ‒ линейный фредгольмов оператор с нулевым индексом (далее, Ф-оператор), действующий из банахова пространства в банахово пространство . Операторы , линейные, действующие из в . Формулировка свойства, вполне определяющего Ф-оператор, приведена в [1].

Определение. Оператор , определяемый формулой

где — некоторые числа, назовем ( B , C )- резольвентой оператора .

Далее, для краткости, ( B , C )-резольвенту будем называть просто резольвентой.

Вводится проектор на , полуобратный оператор

. Рассматривается случай . Разложим элемент ядра по базису и элемент из по базису . Пространство ортонормируется введением скалярного произведения так, что . Тогда справедлива следующая

Лемма 1 [2] . Уравнение

равносильно системе

Пусть некоторые линейные операторы. Вводится обозначение: — сумма по всевозможным перестановкам из элементов и элементов . Отметим, что количество таких перестановок равно биномиальному коэффициенту . Будем полагать . Имеет место следующая

Лемма 2 [3]. Справедлив следующий аналог бинома Ньютона:

(1)

Замечание 1. Вчастности, если коммутативны по умножению, то формула (1) превращается в следующую:

Лемма 3 [4] . Пусть — линейные ограниченные операторы и таковы, что

Тогда оператор обратим и

Доказательство. Действительно, как операторная сумма бесконечной геометрической прогрессии, в силу леммы 2, имеем:

Следующая лемма является обобщением формулы дифференцирования определитель-функции , полученной в [5].

Лемма 4. Пусть

— определитель-функция, где — некоторые достаточно гладкие функции по совокупности переменных функция. Справедлива следующая формула дифференцирования:

Цель работы: получить аналитическое выражение для . Результаты работы могут применяться для аналитического исследования различных задач, связанных с применением свойства фредгольмовости некоторого линейного оператора.

  1. Вывод формулы ( B , C )-резольвенты

Рассмотрим уравнение

В силу леммы 1 оно равносильно системе

(2)

(3)

где , надлежит вычислить.

Наложим следующие

Условие 1. Операторы , , , ограничены.

Условие 2. Числа , достаточно малые, отличные по модулю от нуля, таковы, что

Тогда существует оператор

и равенство (2) можно обратить:

(4)

Подставив (4) в (3), получим систему для вычисления , :

в обозначениях

Далее, по формулам Крамера, получим решение системы

(5)

в обозначениях

Тогда, подставив (5) в (4), получим искомую формулу для резольвенты :

(6)

Замечание 2. Всилу условий 1,2 и леммы 3 имеем:

В силу условия 1 и замечания 2 выполнено при , по норме ограниченных операторов. Следовательно, особенности резольвенты (6) содержатся в функции . Для более удобного исследования преобразуем ее в виде скалярного многочлена по степеням переменных .

Разложим ее в ряд Маклорена [6] в окрестности точки , воспользовавшись леммой 4. Имеем:

(7)

в обозначении

Тем самым, получен следующий результат.

Теорема. Пусть выполнены условия 1,2. Тогда (B,C)-резольвента линейного Ф-оператора сдвумерным ядром определяется формулами (6), (7).

Литература:

  1. Усков В. И., Пантелеева А. Г. Исследование задачи Коши для некоторого возмущенного алгебро-дифференциального уравнения первого порядка на явление погранслоя // Молодой ученый. ‒ 2020. ‒ № 25 (315). ‒ С. 84‒87.
  2. Uskov V. Regularization of an algebro-differential first-order equation with a Fredholm operator in the derivative // Norwegian Journal of development of the International Science. — 2020. — No 38. — PP. 21‒22.
  3. Усков В. И. Решение задач для уравнений соболевского типа методом каскадной декомпозиции // Дисс… канд. физ.-мат. наук. — Воронеж, 2019. — 137 с.
  4. Ряд Неймана. https://ru.wikipedia.org/wiki/Ряд_Неймана (дата обращения: 26.07.2020).
  5. Усков В. И., Анжаурова Т. М. Решение линейных рекуррентных соотношений второго порядка // Молодой ученый. — 2019. — № 42 (280). — C. 1–6.
  6. Ряд Тейлора. https://ru.wikipedia.org/wiki/Ряд_Тейлора#Связанные_определения (дата обращения: 26.07.2020).
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
линейные операторы
фредгольмов оператор
банахово пространство
резольвента
Молодой учёный №31 (321) июль 2020 г.
Скачать часть журнала с этой статьей(стр. 4-7):
Часть 1 (стр. 1-85)
Расположение в файле:
стр. 1стр. 4-7стр. 85

Молодой учёный