Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях

Математика
17.05.2016
201
Поделиться
Библиографическое описание
Есбаев, А. Н. Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях / А. Н. Есбаев, Г. А. Есенбаева, А. А. Смаилова, Н. К. Турсынгалиев. — Текст : непосредственный // Молодой ученый. — 2016. — № 10 (114). — С. 7-10. — URL: https://moluch.ru/archive/114/30057/.


В статье рассмотрено интегральное уравнение Вольтерра второго рода с заданным ядром. Такого рода интегральные уравнения возникают при решении некоторых граничных задач для существенно-нагруженных дифференциальных параболических уравнений в неограниченной области.

Ключевые слова:интегральные уравнения Вольтерра второго рода, модифицированная функция Бесселя, неполная гамма-функция, обобщенная гипергеометрическая функция, символ Похгаммера.

При отыскании решений некоторых граничных задач для существенно-нагруженного дифференциального параболического уравнения естественным образом возникает необходимость исследования интегральных уравнений Вольтерра второго рода следующего вида [1]

, (1)

где — числовой параметр уравнения, — известная функция, определенная на промежутке , ядро интегрального уравнения (1) имеет вид

,

,(2)

, (3)

причем — модифицированная функция Бесселя, — числовой параметр, , — заданная, принимающая положительные значения функция, — искомая функция.

Функция определяет ядро интегрального уравнения (1). Вычислим функцию и представим различные ее интерпретации.

Учитывая, что [2]

при ; , где , , — символ Похгаммера, из (3) получим

,

. (4)

Подставив (4) в (2), получим следующее представление функции

.

Для функции , можно получить другое соотношение, используя интегральное представление модифицированной функции Бесселя [2]

. (5)

Учитывая, что [2]

при , , соотношение () преобразуем к виду

, (6)

, (7).

Так как [2]

, где ,

то

.

.

Учитывая нечетность и четность подынтегральных функций в первом и во втором интегралах последнего соотношения, получим

. Так как [80]

при ; ,

где — обобщенная гипергеометрическая функция, — вырожденная гипергеометрическая функция, , , — символ Похгаммера, , , то соотношение для примет вид

=

. (8)

Представление (6) с учетом (7) и (8) получим в виде

.

Учитывая свойства гамма-функции и бета-функции перепишем последнее соотношение для следующим образом

,

. (9)

Подставляя (9) в (3), получим следующее представление для функции

,

Используя различные представления функции ядра интегрального уравнения, исследуются вопросы разрешимости интегрального уравнения (1).

Литература:

  1. Есбаев А. Н., Есенбаева Г. А., Об одной граничной задаче для нагруженного дифференциального оператора теплопроводности при неподвижной точку нагрузки //Вестник Карагандинского государственного университета. Серия Математика. — 2013. — № 2. — С. 65–69
  2. Прудников А. П., Брычков Ю. А., Марычев О. И. Интегралы и ряды. В 3 т. Т. 2. Специальные функции. Москва, 2003, 664 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
интегральные уравнения Вольтерра второго рода
модифицированная функция Бесселя
неполная гамма-функция
обобщенная гипергеометрическая функция
символ Похгаммера.
Молодой учёный №10 (114) май-2 2016 г.
Скачать часть журнала с этой статьей(стр. 7-10):
Часть 1 (cтр. 1 - 114)
Расположение в файле:
стр. 1стр. 7-10стр. 114

Молодой учёный