Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Разработка математической модели финансовых рынков на основе Гауссовского случайного блуждания

1. Математика
30.11.2021
70
Поделиться
Библиографическое описание
Никонов, М. В. Разработка математической модели финансовых рынков на основе Гауссовского случайного блуждания / М. В. Никонов. — Текст : непосредственный // Исследования молодых ученых : материалы XXVII Междунар. науч. конф. (г. Казань, декабрь 2021 г.). — Казань : Молодой ученый, 2021. — С. 1-6. — URL: https://moluch.ru/conf/stud/archive/408/16785/.


В статье автор пытается создать концепт новой математической модели эконометрических взаимодействий на финансовых рынках. В основу модели заложено случайное блуждание с размером шага, который варьируется в зависимости от нормального распределения. Формат торгов представлен в виде аукциона с разными показателями рынка, в основе моделирования которого лежит Гауссовское случайное блуждание. Переход состояния рынка осуществляется с помощью матрицы вероятностей перехода.

Ключевые слова: математическая модель, моделирование, финансовые рынки, вероятность.

В современном IT мире уже существуют закрытые тестирующие системы для участников фондовых рынков (дилеров, брокеров, маркетмейкеров и т. д.), созданные для решения задач скальпинга и трейдинга. Главной задачей таких систем является проверка стратегий принятия решений участниками рынка, что уменьшает некоторые операционных риски. В реализациях используются детерминированные лонгитюдные данные, то есть многомерные данные, которые получаются серией наблюдений за конкретный период времени для одних и тех же компаний. Другими словами, участники рынка тестируют алгоритмы и стратегии на одних и тех же фондовых рынках. Предлагается первичное, обобщенное тестирование на предлагаемой математической модели. Это позволит отсечь многие алгоритмы с точностью предсказания меньшей, чем методом средних арифметических и медиан рангов [1], отличающийся своей простотой и популярностью в оценке эффективности предсказаний.

В аукционе учувствуют N участников, которые выполняют действия реальных участников рынка, таких как брокер, дилер, маркетмейкер и тд. Каждый участник имеет заданный номер 1 ≤ k ≤ N. Каждый участник с номером k имеет начальный капитал в размере k единиц валюты, Q k единиц сырья, P k единиц продукции и F k производств. k , Q k , P k , F k являются случайными величинами. Моделирование идет циклами — минимальными колебаниями курса на рынке.

На каждом цикле участники производят на своих производствах продукцию из сырья. Сырье увеличивается на каждом цикле и представляет из себя случайный процесс:

Q k c = Q k + E k , c порядковый номер цикла, E k = const — количество нового сырья, — случайная величина, определяющая издержки.

Одно производство может произвести одну единицу продукции, потратив одну единицу сырья и заплатив издержки в виде константной величины = const для каждого производства, цена издержки определяется до старта моделирования. Производство продукции так же является случайным процессом:

P k c = P k + A k , A k = const — количество новой продукции, — случайная величина, определяющая издержки.

Если у участника недостаточно сырья, производств или валюты, то производство не будет удовлетворено.

На каждом цикле участник имеет возможность сделать заявку на строительство производства. Цена строительства является константной величиной = const, определяющаяся до старта моделирования. Строительство производства является случайным процессом:

F k c = F k + B k , B k = const — количество новых производств, — случайная величина, определяющая издержки.

По итогам цикла с каждого участника списывается комиссия рынка — случайная величина, определяемая уровнем рынка и константная комиссия за каждую единицу сырья и производства.

Сведем правила рынка для участников в таблице 1.

Таблица 1

Правила рынка

Количество

Увеличение

Издержки

Сырье

Q k

E k

Продукция

P k

A k

Производство

F k

B k

Валюта

k

?

Q k + P k +

Каждый цикл рынок проводит аукционы по продаже и закупке выбранной продукции участников, выбирая оптимальное предложение. Единичное предложение определяется по формуле:

L k = k k , L k , k количество единиц продукции, k установленная участником цена продукции

В свою очередь предложение равно:

k , где x — количество предложений участника во время цикла

Оптимальное предложение на продажу в свою очередь определяется так:

S p = max( k ), 0 p N

Таким образом, рынок приобретет все единицы продукции у участника с оптимальным предложением, а затем определит чье предложение будет удовлетворено следующим. Аналогично задается оптимальное предложение на покупку:

B p = min( k ), 0 p N

Рынок продолжит удовлетворять предложения участников до тех пор, пока количество продукции, которое закупает(продает) рынок больше нуля.

Пример. Пусть участник k 1 подал заявку на продажу 1 единиц, цена min 1 цена max , а участники k 2 и k 3 подали заявки на продажу 2 единиц, цена min 2 цена max и 3 = 2 , 3 = 2 соответственно, где цена min и цена max задаются рынком на каждом уровне состояния. цена min , цена max . При этом 1 , 2 , 3 количества единиц продукции, которое закупает рынок на данном цикле, 1 * 1 , 2 * 2 , 1 * 1 , 3 * 3 . Тогда рынок купит всю продукцию у участника k 1 , а затем у участников k 2 и k 3 . Если продукции, закупаемой рынком, меньше, чем в сумме у участников k 2 и k 3 , то рынок удовлетворит полностью или частично предложение одного из участников, выбрав его случайным образом, например, с помощью формулы Фишера — Йейтса [2].

По итогам некоторого количества циклов G ≥ 0, участник, которому не хватило количества валюты на покрытие издержек, объявляется банкротом и выходит из моделирования.

Обстановка на рынке может находиться на одном из m уровней. В зависимости от уровня определяются предложения рынка на покупку и продажу продукции у участников. Определяется и цена min , цена max за единицу продукции. Значения определяются по таблице 2 уровней состояния рынка с помощью случайного блуждания [3].

Таблица 2

Уровни состояния рынка

Ур

Покупка

Продажа

Кол - во

цена min

Кол-во

цена max

1

( +

( +

( +

( +

2

( +

( +

( +

( +

3

( +

( +

( +

( +

4

( +

( +

( +

( +

m

( +

( +

( +

( +

В данном случае размер шага переходов на другой уровень является обратным кумулятивным нормальным распределением , где 0 z 1 и является равномерно распределенным случайным числом, а и это среднее и стандартное отклонения нормального распределения, соответственно. Если это начальное значение случайного блуждания, то ожидаемое значение после m шагов равно + m . — индикатор принадлежности игрока с номером k к числу игроков, которые еще не стали банкротами. По определению . , , , — соответствующие начальные значения случайного блуждания.

В начале моделирования уровень определяется случайным образом. Уровень для каждого следующего цикла определяется из предыдущего случайным образом в соответствии с матрицей вероятностей перехода. Отметим, что для задания матрицы перехода возможно и использование одномерного дискретного случайного блуждания — цепи Маркова [4]

, где

Моделирование происходит до тех пор, пока не останется единственный участник. Аукцион объявляет закрытие и начинает новое моделирование с новыми участниками.

Литература:

1. Метод средних арифметических. URL: https://clck.ru/JRFy5

2. Тасирование Фишера — Йейтса. URL: https://clck.ru/FFQy5

3. Случайное блуждание // Гауссовское случайное блуждание. URL: https://clck.ru/Z5zQJ

4. Случайное блуждание // как цепь Маркова. URL: https://clck.ru/Z5zNe

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
математическая модель
моделирование
финансовые рынки
вероятность

Молодой учёный