Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Исследование процессов деградации свойств наноструктурированных пленок на основе SiO2–SnO2-In2O3

Технические науки
29.10.2014
225
Поделиться
Библиографическое описание
Брагина, Л. М. Исследование процессов деградации свойств наноструктурированных пленок на основе SiO2–SnO2-In2O3 / Л. М. Брагина. — Текст : непосредственный // Молодой ученый. — 2014. — № 18 (77). — С. 224-227. — URL: https://moluch.ru/archive/77/13282.

 

В настоящее время интенсивно изучаются газочувствительные процессы в тонких оксидных пленках и оксидных нановолокнах, имеющих вариации внутренних или внешних параметров, для разработки на их основе мультисенсорных систем распознавания газов [1–6]. Например, в работе [7] исследовано влияние однородных (7 нм) и неоднородных (до 24 нм) по толщине покрытий SiO2 на газораспознавательную способность сенсоров. Установлено, что нанесение мембраны SiO2 однородной толщины оказывает влияние не только на газочувствительный отклик пленок SnO2, но и на изменение их свойств с течением времени. Кроме того, показано, что обработка равномерным ионным пучком Ar+ поверхности пленки диоксида олова приводит к формированию дополнительных дефектов в приповерхностном слое и, соответственно, увеличению проводящего канала в объеме пленки, что приводит к уменьшению величины газочувствительного отклика и при отсутствии дифференциации свойств — к ухудшению газораспознавательной способности.

Вследствие этого немаловажной задачей становится исследование деградации свойств наноструктурированных пленок на основе двух и трехкомпонентных систем, таких как

SiO2–SnO  — 5 % In2O3; ♦ — 10 % In2O3; ▪ — 15 % In2O3; • — 25 % In2O3; ––– расчет по уравнению (1)

Рис. 1. Относительное изменение сопротивления наноструктурированных плёнок на основе SiO2-SnO2-In2O3

 

На рисунке 1 представлено изменение сопротивления наноструктурированных плёнок на основе SiO2-SnO2-In2O3, полученных золь-гель методом [8–12] в процессе эксплуатации. Анализ приведенных зависимостей R=f(t) показывает, что с течением времени происходит рост сопротивления наноструктурированных пленок, которое зависит от массовой доли оксида индия и может быть описан следующим уравнением:

                                                                                                            (1)

где R0 — начальное сопротивление пленки после отжига [кОм], A, B — эмпирические коэффициенты, имеющие размерность [кОм] и [мин] соответственно.

Рост сопротивления в процессе эксплуатации, вероятно, связан с самоокислением поверхности пленки. В поликристаллических материалах кислород диффундирует по границам зерен, так как плотность пленок может составлять меньше 90 % от плотности монокристалла, а затем в объем кристаллитов по вакансиям. Диффузия кислорода активизирует диффузию точечных дефектов в объеме пленки. С течением времени интенсивность диффузии атомов кислорода в пленке убывает за счет уменьшения концентрации вакансий в узлах кристаллической решетки, не занятых кислородом. Процесс диффузии кислорода закончится тогда, когда все вакансии в кристаллической решетке заполнены. Это соответствует распределению кислорода по всему объему наноструктурированной пленки [13–17].

Следовательно, процессы самоокисления вызывают увеличение сопротивления как вследствие увеличения интенсивности рассеяния носителей заряда за счет заполнения кислородом вакансий и образования изолирующей фазы на границах зерен пленки, так и уменьшения концентрации носителей заряда из-за их захвата атомами кислорода.

Знание закономерностей процессов самоокисления и деградации свойств наноструктурированных материалов позволяет решить одну из задач современного приборостроения, а именно, управляемого синтеза многокомпонентных систем для приборов нано- и микроэлектроники нового поколения. Следовательно, задачами данного исследования являются управление параметрами наноструктурированных пленок и их стабилизация во времени, как в процессе синтеза пленок за счет выбора технологических режимов получения [18–21], так и посредством внешних воздействий, таких как отжиг, облучение рентгеновскими лучами [22–24].

В широком временном интервале наблюдаются как резкое увеличение сопротивления наноструктурированных пленок на основе SiO2-SnO2-In2O3, так и его стабилизация (рисунок 2).

Рис. 2. Относительное изменение сопротивления наноструктурированных плёнок на основе SiO2-SnO2-In2O3. ♦– 5 % In2O3; • — 10 % In2O3; ▪ — 15 % In2O3;  — 25 % In2O3

 

Анализ рисунка 2 показывает, что при длительном хранении коэффициент старения приобретает постоянные значения, при этом зависимости для пленок с различной концентрацией In2O3 сближаются. Пренебрегая модификациями морфологии и структуры пленки, это изменение проводимости может быть объяснено изменениями концентрации основных носителей заряда либо их подвижности (в данном случае — электронов, связанных с вакансиями кислорода). Очевидно, что эти изменения определяются диффузией, в первую очередь, молекул кислорода вдоль межзеренных границ и пор, имеющихся в пленке, в объем или из объема слоя [25–28].

Следует отметить, что при низких температурах отжига, пленки имеют максимальные значения коэффициента старения сопротивления и его стабилизация наступает при больших периодах эксплуатации. Оптимальными режимами получения таких пленок с точки зрения минимальных значений коэффициента старения сопротивления являются: температура отжига более 450 °С и время свыше 30 минут [29]. Таким образом, посредством режимов синтеза можно управлять не только свойствами наноструктурированных пленок на основе SiO2-SnO2-In2O3, но и их временной стабильностью.

 

Литература:

 

1.      Аверин И. А., Пронин И. А., Карманов А. А. Исследование газочувствительности сенсоров на основе наноструктурированных композиционных материалов SiO2-SnO2 // Нано- и микросистемная техника. — 2013. — № 5. — С. 23–26.

2.      Аверин И. А., Пронин И. А., Якушова Н. Д., Горячева М. В. Особенности вольтамперных характеристик газовых сенсоров резистивного типа в мультисенсорном исполнении // Датчики и системы, 2013. — № 12 (175). — С. 12–16.

3.      Карманов А. А. Особенности синтеза материалов для чувствительных элементов мультисенсорных систем золь-гель методом // Труды международного симпозиума Надежность и качество. — 2013. — Т. 2. — С. 115–118.

4.      Аверин И. А., Никулин А. С., Печерская Р. М., Пронин И. А. Чувствительные элементы газовых сенсоров на основе пористых наноплёнок // Труды международного симпозиума Надежность и качество. — 2010. — Т. 2. — С. 101–103.

5.      Аверин И. А., Александрова О. А., Мошников В. А., Пронин И. А. Модифицирование селективных и газочувствительных свойств резистивных адсорбционных сенсоров путем целенаправленного легирования // Датчики и системы, 2013. — № 3. — С. 13–16;

6.      Moshnikov V. A., Gracheva I. E., Anchkov M. G., Pshchelko N. S., Levine K. L. Investigating properties of gas-sensitive nanocomposites obtained via hierarchical self-assembly // Smart Nanoobjects, 2013. — V. 2. — № 2. — P. 165–179.

7.      Geistlinger H. Election theory of thin-film gas sensors // Sensors & Actuators B. — 1993. — V. 17. P. 47–60.

8.      Аверин И. А., Карманов А. А., Мошников В. А., Печерская Р. М., Пронин И. А. Особенности синтеза и исследования нанокомпозитных пленок, полученных методом золь-гель технологии // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2012. — № 2. — С. 155–162.

9.      Аверин И. А., Игошина С. Е., Карманов А. А., Пронин И. А. Моделирование образования золь-гель нанокомпозитных пленок // Труды международного симпозиума Надежность и качество. — 2013. — Т. 2. — С. 201–205.

10.  Аверин И. А., Пронин И. А. Особенности фазового состояния неравновесных термодинамических систем полимер-растворитель // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2012. — № 2. — С. 163–169.

11.  Пронин И. А., Аверин И. А., Димитров Д. Ц., Карманов А. А. Особенности структурообразования и модели синтеза нанокомпозитных материалов состава SiO2-MexOy, полученных с помощью золь-гель технологии // Нано- и микросистемная техника. — 2014. — № 8. — С. 3–7.

12.  Аверин И. А., Александрова О. А., Мошников В. А., Печерская Р. М., Пронин И. А. Типы фазового распада растворов полимеров // Нано- и микросистемная техника. — 2012. — № 7. — С. 12–14.

13.  Аверин И. А., Пронин И. А., Мошников В. А., Димитров Д. Ц., Якушова Н. Д., Карманов А. А., Кузнецова М. В.. Анализ каталитических и адсорбционных свойств d-металлов-модификаторов диоксида олова // Нано- и микросистемная техника. — 2014. — № 7. — С. 47–51

14.  Аверин И. А., Карманов А. А., Пронин И. А. Моделирование процессов газочувствительности полупроводниковых сетчатых композитов на основе SiO2-SnO2 // Труды международного симпозиума Надежность и качество. — 2012. — Т. 1. — С. 214–216.

15.  Аверин И. А., Карпова С. С., Мошников В. А., Никулин А. С., Печерская Р. М., Пронин И. А. Управляемый синтез тонких стекловидных пленок // Нано- и микросистемная техника. — 2011. — № 1. — С. 23–25.

16.  Аверин И. А., Игошина С. Е., Карманов А. А. Исследование частотных зависимостей емкости наноструктур на основе SiO2-SnO2 // Известия высших учебных заведений. Поволжский регион. Технические науки. — 2013. — № 3 (27). — С. 168–175.

17.  Аверин И. А., Печерская Р. М. Контролируемое изменение эксплуатационных характеристик чувствительных элементов и их временной стабильности // Нано- и микросистемная техника. — 2007. — № 1. — С. 20–23.

18.  Аверин И. А., Карманов А. А., Печерская Р. М., Пронин И. А. Исследование золя ортокремневой кислоты методом ИК-спектрометрии // Труды международного симпозиума Надежность и качество. — 2012. — Т. 2. — С. 181–182.

19.  Игошина С. Е., Карманов А. А., Сигаев А. П. Особенности ИК-спектров пропускания пленкообразующих золей на основе тетраэтоксисилана, содержащих модифицирующие соединения // Молодой ученый. — 2014. — № 9 (68). — С. 158–161.

20.  Аверин И. А., Блохин Ю. Н., Луцкая О. Ф. Термодинамическое исследование условий синтеза слоев твердых растворов PbSl-xSex // Неорганические материалы. — 1988. –Т.24. — № 2. — С. 219–222.

21.  Аверин И. А., Печерская Р. М. Управление составом многокомпонентных систем // Известия вузов поволжский регион. Сер. Естественные науки. — 2006. — Вып. 5. — С. 185–191

22.  Аверин И. А., Мошников В. А., Пронин И. А. Вклад поверхности газочувствительных композитов SnO2-In2O3 в сенсорные свойства и селективность // Нано- и микросистемная техника. — 2013. — № 9. — С. 19–21.

23.  Давыдов С.Ю, Мошников В. А., Федотов А. А. Адсорбция молекул кислорода и окиси углерода на диоксиде олова // ЖТФ, 2006. — Т. 76. — № 1. — С. 141–142.

24.  Аверин И. А. Управляемый синтез гетерогенных систем: получение и свойства: монография / Пенза: Изд-во Пенз. гос. ун-та., 2006. — 316 с.

25.  Игошина С. Е., Аверин И. А., Карманов А. А. Моделирование газочувствительности пористых пленок на основе полупроводниковых оксидов // Вестник Рязанского государственного радиотехнического университета. — 2014. — № 2 (48). — С. 115–119.

26.  Пронин И. А., Аверин И. А., Мошников В. А., Якушова Н. Д., Кузнецова М. В., Карманов А. А. Перколяционная модель газового сенсора на основе полупроводниковых оксидных наноматериалов с иерархической структурой // Нано- и микросистемная техника. — 2014. — № 9. — С. 15–19.

27.  Игошина С. Е., Карманов А. А., Сигаев А. П. Вакуумметры с чувствительными элементами на основе пористых наноструктурированных материалов состава SiO2-SnO2 // Молодой ученый. — 2014. — № 11 (70). — С. 52–55.

28.  Аверин И. А., Аношкин Ю. В., Печерская Р. М. Исследование поверхностей слоев резистивных структур на низкоразмерном уровне // Нано- и микросистемная техника. — 2010. — № 1. — С. 25–26.

29.  Аверин И. А., Сигаев А. П., Карманов А. А., Пронин И. А., Игошина С. Е., Кудашов А. А. Влияние отжига на качественный состав наноструктурированных материалов на основе SiO2, SiO2-SnO2, SiO2-SnO2-In2O3 // Труды Международного симпозиума Надежность и качество, 2014. — Т.2.– С. 133–136.

 



[1] Работа выполнена при финансовой поддержке со стороны Минобрнауки России в рамках базовой части государственного задания ПГУ № 2014/151 (код проекта 117).

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №18 (77) ноябрь-1 2014 г.
Скачать часть журнала с этой статьей(стр. 224-227):
Часть 3 (cтр. 207 - 319)
Расположение в файле:
стр. 207стр. 224-227стр. 319
Похожие статьи
Исследование структурных параметров композиционных материалов методом рентгенодифракционного анализа
Сенсорные свойства и диффузия газов в пористых нанокомпозитных слоях на основе полупроводниковых оксидов металлов
Газочувствительные нанокомпозиты на основе диоксида олова, полученные методом химического соосаждения
Анализ концентрации собственных дефектов при создании газочувствительных структур на основе диоксида олова
Получение оксидных материалов методом алкокситехнологии
Разработка перколяционной модели газовых сенсоров
Модифицирование селективных и газочувствительных свойств сенсоров путем легирования
Моделирование чувствительности газового сенсора на основе МДП-транзистора
Чувствительность переходов ZnO/ZnO:Fe к этанолу
Особенности использования наноматериалов на основе SiO2-SnO2-In2O3 в качестве чувствительных элементов

Молодой учёный