Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Получение оксидных материалов методом алкокситехнологии

Химия
05.08.2013
291
Поделиться
Библиографическое описание
Якушова, Н. Д. Получение оксидных материалов методом алкокситехнологии / Н. Д. Якушова. — Текст : непосредственный // Молодой ученый. — 2013. — № 8 (55). — С. 47-49. — URL: https://moluch.ru/archive/55/7602/.

Получение неорганических оксидных материалов — актуальная задача для микро- и наноэлектронной, оптоэлектронной, аэрокосмической и других областей науки и техники. Преобладающие на сегодняшний день традиционные технологии их синтеза, подразумевающие использование в качестве прекурсоров неорганических солей металлов, оксидов и гидроксидов, в значительной мере исчерпали себя [1–5]. Альтернативой традиционным методам, лишенной их недостатков, является использование в качестве прекурсоров алкоксидов различных химических элементов. Данный метод получил название алкоксотехнологии. За рубежом алкоксотехнология достаточно давно позволила начать выпуск ряда материалов для микроэлектроники, космических технологий [6, 7].

На сегодняшний день можно выделить ряд преимуществ алкоксотехнологии перед традиционными методами [8–10]:

-          высокая чистота конечных продуктов;

-          химическая и структурная однородность многокомпонентных систем;

-          простота создания покрытий;

-          низкие температуры синтеза;

-          высокая экологичность;

-          возможность синтеза новых неорганических среднинений;

-          простота управления структурой.

В работах авторов [11–19] установлено, что при варьировании условиями синтеза покрытий, полученных с помощью алкоксотехнологии, возможно гибкое управление структурой полученных композитов. На рисунке показана структура покрытий состава SnO2 — SiO2, при различных условиях синтеза. Он отражает получение нуклеофильных сферических зародышей, перколяционный стягивающий кластер и спинодальный распад золя.

Рис. 1. Структура покрытий, полученных алкоксотехнологией: а) — нуклеофильный рост кластеров; б) — перколяционный стягивающий кластер; в) — спинодальный распад золя

Несмотря на то, что количество публикаций на эту тему в мире исчисляется тысячами, в отечественной литературе они единичны и часто носят академический характер. В связи с этим появляется недооценка алкоксотехнологии как метода синтеза нанопокрытий для нужд промышленности. Таким образом, перспективным является развитие научных представлений процессов алкоксотехнологии, а также управляемый синтез продуктов, полученных с ее помощью.

В работе развиты физико-химичнеские основы алкоксотехнологии. Автором изучены процессы образования золей, предложены методы управления их структурой за счет варьирования технологических режимов. Предложен фрактальный подход к механизмам синтеза золей, что качественно повысит управляемость структуры и свойств кластеров в золях. Экспериментальные исследования включают в себя всестороннее изучение свойств и структуры самих золей, так и покрытий, получаемых на их основе [20–23].

Совокупность предложенных методов и подходов позволит развить научные основы метода алкоксотехнологии применительно к созданию керамических материалов авиа- и космической промышленности.

Литература:

1.                  Аверин И. А., Мошников В. А., Пронин И. А. Влияние типа и концентрации собственных дефектов на структуру и свойства диоксида олова // Нано- и микросистемная техника. 2013. — № 1. — С. 27–29;

2.                  Аверин И. А., Карманов А. А., Мошников В. А., Печерская Р. М., Пронин И. А. Особенности синтеза и исследования нанокомпозитных плёнок, полученных методом золь-гель-технологии // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2012. — № 2. — С. 155–163;

3.                  Аверин И. А. Пронин И. А. Особенности фазового состояния неравновесных термодинамических систем полимер-растворитель // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2012. — № 2. — С. 163–170;

4.                  Пронин И. А. Анализ концентрации собственных дефектов при создании газочувствительных структур на основе диоксида олова // Молодой ученый. — 2012. — № 8. — С. 7–8;

5.                  Аверин И. А., Александрова О. А., Мошников В. А., Печерская Р. М., Пронин И. А. Типы фазового распада растворов полимеров // Нано- и микросистемная техника, № 7, 2012 год, с. 12–14;

6.                  Аверин И. А., Мошников В. А., Пронин И. А. Особенности созревания и спинодального распада самоорганизующихся фрактальных систем // Нано- и микросистемная техника, № 5, 2012 год, с. 29–33;

7.                  Пронин И. А. Управляемый синтез газочувствительных пленок диоксида олова, полученных методом золь-гель-технологии // Молодой ученый. — 2012. — № 5. — С. 57–60;

8.                  Мошников В. А., Грачёва И. Е., Пронин И. А. Исследование материалов на основе диоксида кремния в условиях кинетики самосборки и спинодального распада двух видов // Нанотехника. — 2011. — № 2 (9). — с. 46–54;

9.                  Аверин И. А., Печерская Р. М., Пронин И. А. Особенности низкотемпературной самоорганизации золей на основе двухкомпонентных систем на основе SiO2 — SnO2 // Нано- и микросистемная техника, № 11, 2011 год, с. 27–30;

10.              Аверин И. А., Никулин А. С., Мошников В. А., Печерская Р. М., Пронин И. А. Чувствительный элемент газового сенсора с нанострукутрированным поверхностным рельефом // Датчики и системы. — 2011. — № 2. — 24–27;

11.              Аверин И. А., Карпова С. С., Мошников В. А., Никулин А. С., Печерская Р. М., Пронин И. А. Управляемый синтез тонких стекловидных пленок // Нано- и микросистемная техника. — 2011.– № 1. — С.23–25;

12.              Якушова Н. Д. Методы синтеза пленок модифицированного диоксида олова и их сенсорные свойства // Молодой ученый. — 2013. — № 2. — С. 9–14;

13.              Печерская Е. А., Рябов Д. В., Якушова Н. Д. Метрологические аспекты модели активного диэлектрика // Инновации на основе информационных и коммуникационных технологий. — 2012. — № 1. — С. 208–213;

14.              Якушова Н. Д., Димитров Д. Ц. // Чувствительность переходов ZnO/ZnO:Fe к этанолу // Молодой ученый. 2013. № 5. С. 26–28;

15.              Томаев В. В., Гарькин Л. Н., Мирошкин В. П., Мошников В. А. Исследование газочувствительности в наноструктурированных пленках на основе диоксида олова методом импедансной спектроскопии // Физика и химия стекла. 2005. Т. 31. № 2. С. 331–339;

16.              Мошников В. А., Грачева И. Е. Сетчатые газочувствительные нанокомпозиты на основе диоксидов олова и кремния // Вестник Рязанского государственного радиотехнического университета. 2009. № S30. С. 92–98;

17.              Грачева И. Е., Максимов А. И., Мошников В. А. Анализ особенностей строения фрактальных нанокомпозитов на основе диоксида олова методами атомно-силовой микроскопии и рентгеновского фазового анализа // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 10. С. 16–23;

18.              Пронин И. А., Аверин И. А., Димитров Д. Ц., Мошников В. А. Чувствительность переходов ZnO-ZnO:Fe к парам этанола // Датчики и системы. — 2013. — № 6. — С. 60–63;

19.              Аверин И. А., Пронин И. А., Карманов А. А. Исследование газочувствительности сенсоров на основе наноструктурированных композиционных материалов SiO2-SnO2 // Нано- и микросистемная техника. — 2013. — № 5. — С. 23–26;

20.              Пронин И. А., Аверин И. А., Димитров Д. Ц., Крастева Л. К., Папазова K. И., Чаначев A. С. Исследование чувствительности к этанолу переходов ZnO — ZnO:Fe на основе тонких наноструктурированных пленок, полученных с помощью золь-гель-технологии // Нано- и микросистемная техника. — 2013. — № 3 — С. 6–10;

21.              Пронин И. А., Аверин И. А., Александрова О. А., Мошников В. А. Модифицирование селективных и газочувствительных свойств резистивных адсорбционных сенсоров путем целенаправленного легирования // Датчики и системы. — 2013. — № 3. — С. 13–16;

22.              Калинина М. В., Мошников В. А., Тихонов П. А., Томаев В. В., Дроздова И. А. Электронно-микроскопические исследования структуры газочувствительных нанокомпозитов, полученных гидропиролитическим методом // Физика и химия стекла. 2003. Т. 29. № 3. С. 450;

23.              Moshnikov V. A., Gracheva I., Lenshin A. S., Spivak Y. M., Anchkov M. G., Kuznetsov V. V., Olchowik J. M. Porous silicon with embedded metal oxides for gas sensing applications // Journal of Non-Crystalline Solids. 2012. Т. 358. № 3. С. 590–595.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №8 (55) август 2013 г.
Скачать часть журнала с этой статьей(стр. 47-49):
Часть 1 (стр. 1-173)
Расположение в файле:
стр. 1стр. 47-49стр. 173

Молодой учёный