Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

О распространении гармонических волн в деформируемой цилиндрической панели

Технические науки
03.01.2014
62
Поделиться
Библиографическое описание
Сафаров, И. И. О распространении гармонических волн в деформируемой цилиндрической панели / И. И. Сафаров, У. Т. Ядгаров. — Текст : непосредственный // Молодой ученый. — 2014. — № 1 (60). — С. 114-116. — URL: https://moluch.ru/archive/60/8854/.

В работе рассматривается распространение гармонических волн в цилиндрической панели с переменной толщиной. Для вывода уравнений оболочки использован принцип возможных перемещений. Решения краевой задачи получены методом ортогональной прогонки Годунова. Были исследованы дисперсионные кривые в зависимости от различных геометрических параметров системы.

Рассматривается деформированная бесконечная цилиндрическая оболочка толщиной h, плотности ρ, с модулем Юнга Е, коэффициентом Пуассона  и вязкоупругих свойств материала. В криволинейной ортогональной системе координат (α1; α2; z) при z = 0 оболочка занимает область

                    . Кривизны срединной поверхности z=0 равны  соответственно координатам α1 и α2. В рамках гипотез Кирхгофа — Лява закон изменения компонент вектора перемещений u1(z), u2(z), w(z) оболочки определяются следующими соотношениями [1,2]

u1(z) = u — θ1z;           u2(z)= v — θ2 z;           u3(z) = w,         (1)

где u, v, w — компоненты вектора перемещений срединной поверхности; θ1, θ2 — углы поворота нормали относительно осей α1 и α2. Для вывода уравнений оболочки, использовался принцип возможных перемещений. В свою очередь, усилия и моменты связаны с компонентами деформации определяющимися соотношениями, вытекающими из обобщенного закона Гука:

где

E — операторный модуль упругости, которые имеют вид:

-произвольная функция времени; -ядро релаксации; -мгновенной модуль упругости; -коэффициент Пуассона, которая предлагается, что постоянная величина. Если пренебречь инерцией поворота нормали, то виртуальную работу силы инерции оболочки можно представить в виде:

          (2)

После подстановки выражения (2) в уравнение принцип возможных перемещений и стандарта процедуры интегрирования по частям, получаем уравнения движения в виде:

                              (3)

Альтернативные краевые условия свободного края, или жесткой заделки, при α2 = 0, имеют вид:

свободный край

;;;      (4)

жесткая заделка

u=0,      v=0,                 w=0,                 q2=0                 (5)

Используя соотношения (3), (4) и (5) полную систему уравнений движения можно представить в виде восьми дифференциальных уравнений, размешенных относительно первых производных по α2. В случае бегущих вдоль α1 гармонических волн решения краевой задачи для полуених системы (5) с краевыми условиями типа (4), (5) допускают разделение переменных

; ; ;

;; ;   (6)

; ;

где - комплексная собственная частота; к- волновое число, действительная величина; -действительная часть комплексной частоты; -плотность; - функции формы колебаний.

Далее предполагается, что оба края оболочки  и α1= l — свободны. После подстановки соотношений (6) в уравнения (3) учитывая и краевые условия (4) имеем спектральную краевую задачу по параметру  для системы восьми обыкновенных дифференциальных уравнений относительно комплексной функции формы:

            

                  (7)

  ; ;            ;         

Е выражаются через операторные модули упругости:.

Здесь , , соответственно, косинус и синус образы Фурье ядра релаксации материала. В качестве примеры вязкоупругого материала примем трех параметрические ядра релаксации , обладающее слабой сингулярностью [2]. При анализе дисперсии гармонических волн параметр к считается заданным.

На основе решения краевой задачи (7) методом ортогональной прогонки Годунова был выполнен численный анализ дисперсии этих волн.

-          с ростом кривизны цилиндрической панели постоянной толщины увеличивается реальные части комплексной  скорости распространения первой изгибной моды и уменьшается скорость распространения второй крутильной моды так, что, начиная с некоторого значения параметра кривизны, моды дважды пересекаются между собой. С увеличением кривизны увеличивается также число узловых точек формы колебаний прогиба;

-          в случае клиновидной цилиндрической панели для каждой моды существуют предельные скорости распространения при увеличении волнового числа, совпадающие по величине с соответствующими скоростями нормальных волн в клиновидной пластине нулевой кривизны. В коротковолновом диапазоне локализация движения существует и увеличивается с ростом кривизны панели. Число узловых точек формы колебаний прогиба зависит не только от кривизны, но и от волнового числа.

Литература:

1.         Новожилов В. В. Теория тонких оболочек– Л.: Судпромгиз,1962.-431с.

2.         Колтунов М. А. Ползучесть и релаксация -М.: Высшая шкала,1976.-277с.

3.         Бозоров М. Б., Сафаров И. И., Шокин Ю. И. Численное моделирование колебаний диссипативно однородных и неоднородных механических систем. СО РАН, Новосибирск, 1996.- 188с.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №1 (60) январь 2014 г.
Скачать часть журнала с этой статьей(стр. 114-116):
Часть 1 (cтр. 1 - 151)
Расположение в файле:
стр. 1стр. 114-116стр. 151

Молодой учёный