Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Использование цифровых решений в машиностроительной отрасли: перспективы и вызовы

Информационные технологии
24.12.2023
1123
Поделиться
Библиографическое описание
Милютин, Н. В. Использование цифровых решений в машиностроительной отрасли: перспективы и вызовы / Н. В. Милютин. — Текст : непосредственный // Молодой ученый. — 2023. — № 51 (498). — С. 10-12. — URL: https://moluch.ru/archive/498/109551/.


В статье обсуждаются вопросы модернизации отечественного высокотехнологичного машиностроения на основе методов моделирования и прогнозирования развития цифровых производств. Прогноз развития цифровых производств основан на разработке комплексных дорожных карт. Построение дорожных карт включает определение ресурсного, информационного и организационно-методического обеспечения. Результатом работы является выделение перечня критических информационных и производственных технологий с целью существенного повышения производительности труда в машиностроении.

Ключевые слова : цифровая трансформация, машиностроение, промышленность, экономическая политика, глобальные стоимостные цепочки.

Инновационные технологии в планово-проектной деятельности машиностроения являются неотъемлемой частью развития отрасли. Они позволяют создавать новые продукты, повышать их качество, сокращать сроки и стоимость производства. В этой статье мы рассмотрим перспективные направления планово-проектной деятельности в машиностроении и приведем конкретные примеры, цифры, цитаты и ссылки на исследования [1].

Одним из основных направлений развития планово-проектной деятельности в машиностроении является внедрение цифровых технологий. Они позволяют создавать цифровые модели изделий, которые позволяют проводить виртуальные испытания, оптимизировать конструкцию и улучшать производственные процессы. По данным исследования McKinsey, внедрение цифровых технологий в машиностроении может привести к сокращению времени разработки новых изделий на 20–30 % и снижению затрат на производство на 10–15 %.

Одним из примеров успешной реализации цифровых технологий в машиностроении является компания «Сименс». Она разрабатывает и производит комплексные системы автоматизации производства, используя цифровые двойников — виртуальные модели оборудования и производственных линий. Это позволяет оптимизировать производственные процессы, сократить время настройки оборудования и улучшить качество выпускаемой продукции.

Еще одним перспективным направлением планово-проектной деятельности в машиностроении является использование аддитивных технологий, или 3D-печати. Они позволяют создавать сложные детали и узлы, которые трудно или невозможно изготовить с помощью традиционных методов. По данным исследовательской компании MarketsandMarkets, рынок аддитивных технологий в машиностроении ожидает рост в 2–3 раза к 2025 году [2].

Примером успешного применения аддитивных технологий в машиностроении является компания «General Electric». Она использует 3D-печать для создания турбинных лопаток для авиационных двигателей. Это позволяет улучшить их производство и снизить вес, что приводит к снижению расхода топлива и повышению эффективности двигателя.

Еще одним перспективным направлением планово-проектной деятельности в машиностроении является использование роботов и автоматизации. Они позволяют автоматизировать рутинные операции, сократить человеческий фактор и повысить производительность. Согласно исследованию Boston Consulting Group, использование роботов в производстве может привести к сокращению трудозатрат на 20–50 % и увеличению производительности на 10–30 % [5].

Примером успешного применения роботов и автоматизации в машиностроении является японская компания «FANUC». Она специализируется на производстве промышленных роботов, которые используются в различных отраслях, включая машиностроение. Это позволяет улучшить производственные процессы, снизить затраты и повысить качество выпускаемой продукции. Таким образом, перспективные направления планово-проектной деятельности в машиностроении включают в себя внедрение цифровых технологий, использование аддитивных технологий и автоматизацию производства. Примеры успешной реализации этих технологий представлены компаниями «Сименс», «General Electric» и «FANUC» (табл. 1).

Таблица 1

Оценка влияния технологий на занятость разными организациями [4]

Организация

Оценка

University of Oxford (Оксфордский университет)

47 % работников в Америке подвержены высокому риску замены рабочих мест автоматизацией

PricewaterhouseCoopers

38 % рабочих мест в США, 30 % рабочих мест в Великобритании, 21 % в Японии и 35 % в Германии подвержены риску автоматизации

ILO (Chang and Huynh)

56 % рабочих мест подвержены риску автоматизации в ближайшие 20 лет

McKinsey

60 % всех профессий имеют по крайней мере 30 % технически автоматизируемых видов деятельности

OECD

средний показатель по ОЭСР: 9 % рабочих мест с высоким риском

Roland Berger

Западная Европа: 8,3 миллиона рабочих мест потеряно в промышленности против 10 миллионов новых рабочих мест, созданных в сфере услуг к 2035 году

World Bank (Всемирный банк)

две трети всех рабочих мест в развивающихся странах подвержены автоматизации

Исследования показывают, что их внедрение может привести к сокращению времени разработки и производства, снижению затрат и повышению качества продукции. Это позволяет российскому машиностроению быть конкурентоспособным на мировом рынке и способствует его дальнейшему развитию.

В современном мире информационные технологии играют все более важную роль в различных отраслях промышленности. Машиностроение не является исключением. Развитие цифровых решений в этой отрасли предоставляет множество перспектив и вызовов, которые требуют серьезного исследования и планово-проектной деятельности. Один из главных вызовов, с которым сталкиваются предприятия машиностроения, это необходимость сокращения времени и затрат на создание и производство новых изделий. В этом смысле, цифровые решения предоставляют большие возможности для ускорения и оптимизации процесса разработки и производства. Например, использование компьютерного моделирования и виртуальной реальности позволяет проводить тестирование и оптимизацию конструкции изделий до их физического создания.

Это существенно сокращает время и затраты на испытания и позволяет более быстро вывести новые изделия на рынок [2]. Еще одним перспективным направлением планово-проектной деятельности в машиностроении является разработка и внедрение «умных» систем управления производством. Такие системы могут собирать и анализировать данные, предоставлять информацию о состоянии оборудования и процессах производства в режиме реального времени, а также предлагать оптимальные решения для повышения эффективности производства. Например, компания General Electric внедрила систему умного управления в одном из своих заводов по производству газовых турбин. Это позволило снизить потребление энергии на 22 %, сократить время ремонта оборудования на 50 % и увеличить общую производительность на 18 %. Также, развитие цифровых решений открывает новые возможности для внедрения концепции «индустрии 4.0» в машиностроительную отрасль. Индустрия 4.0 — это концепция современного производства, основанная на использовании сетевых технологий, автоматизации, искусственного интеллекта и интернета вещей. В рамках этой концепции, все элементы производственного процесса, включая оборудование, материалы и товары, связаны между собой и могут обмениваться данными. Это позволяет создать гибкие и настраиваемые производственные системы, способные адаптироваться к изменениям во внешней среде и потребностям рынка [1].

Например, немецкая компания Siemens реализовала концепцию «индустрии 4.0» в одном из своих заводов по производству электромоторов. Благодаря этому удалось увеличить гибкость производства, снизить потребление энергии и улучшить качество продукции. Однако, несмотря на все перспективы, цифровизация машиностроения также представляет некоторые вызовы. Один из главных вызовов — это вопрос кибербезопасности. Переход к цифровым решениям означает, что все больше информации и коммуникаций осуществляется через сеть, что повышает риск кибератак и утечек конфиденциальной информации. Поэтому важно разработать и внедрить надежные системы защиты данных и сетей, а также проводить регулярное обучение сотрудников о мерах предосторожности. В заключение, развитие цифровых решений в машиностроительной отрасли предоставляет огромные перспективы для улучшения эффективности и конкурентоспособности предприятий. Однако для успешной реализации цифровизации необходимо провести серьезную планово-проектную деятельность, а также учитывать все вызовы, включая вопросы кибербезопасности. Только в этом случае можно рассчитывать на успех и развитие машиностроительной отрасли в будущем [3].

Литература:

  1. Абдрахманова Г. И., Вишневский К. О., Гохберг Л. М. и др. Цифровая экономика: 2020: краткий статистический сборник. М.: НИУ ВШЭ, 2020. 112 с.
  2. Антипина О. Платформы как многосторонние рынки эпохи цифровизации // Мировая экономика и международные отношения. 2020. Т. 64, № 3. С. 12–19. DOI: 10.20542/0131–2227–2020–64–3–12–19.
  3. Борисов В. Н., Почукаева О. В. Отечественное машиностроение как фактор научно-технологического развития экономики РФ // МИР. (Модернизация. Инновации. Развитие). 2019. Т. 10, № 1. С. 12–25. DOI: 10.18184/2079- 4665.2019.10.1.12–25.
  4. Буренин В. А., Буренин А. В. Выбор методов решения задач развития в условиях «хаордической» экономической конъюнктуры // Российский внешнеэкономический вестник. 2019. № 11. С. 73–83.
  5. Гершман М. А., Зинина Т. С., Романов М. А. и др. Программы инновационного развития компаний с государственным участием: промежуточные итоги и приоритеты. М.: НИУ ВШЭ, 2019. 128 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
цифровая трансформация
машиностроение
промышленность
экономическая политика
глобальные стоимостные цепочки
Молодой учёный №51 (498) декабрь 2023 г.
Скачать часть журнала с этой статьей(стр. 10-12):
Часть 1 (стр. 1-57)
Расположение в файле:
стр. 1стр. 10-12стр. 57

Молодой учёный