Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Продление срока жизни батареи в измерительных устройствах

Технические науки
26.04.2023
37
Поделиться
Библиографическое описание
Якунин, Д. А. Продление срока жизни батареи в измерительных устройствах / Д. А. Якунин. — Текст : непосредственный // Молодой ученый. — 2023. — № 17 (464). — С. 56-60. — URL: https://moluch.ru/archive/464/101884.


Батареи на основе тионилхлорида лития (LiSOCI2) популярны в интеллектуальных измерительных устройствах, поскольку они обеспечивают более высокую плотность энергии и лучшее соотношение цены и мощности по сравнению с такими химическими элементами батарей как диоксид лития-марганца (LiMnO2). Одним из недостатков аккумуляторов LiSOCI2 является плохая реакция на пиковые нагрузки, что может привести к снижению полезной емкости аккумулятора. В этой статье будет рассмотрен эффективный метод отделения пиковых нагрузок от батареи в диапазоне нескольких сотен миллиампер, который может помочь увеличить срок службы батареи.

Максимальное увеличение полезной емкости батареи очень важно, поскольку это позволяет конструкции системы поддерживать:

— Больше снятий показаний и сессий передачи данных от одной и той же батареи.

— Более длительный срок службы батареи.

— Аккумулятор меньшего размера при том же сроке службы.

Следовательно, сводятся к минимуму затраты на батарею и техническое обслуживание, а также затраты на разработку, позволяя повторно использовать одну и ту же конструкцию измерителя для различных реализаций.

Примером измерителя для данной статьи будет служить расходомер воды, к которому предъявляются следующие требования: успешная конструкция, обеспечивающая длительный срок эксплуатации (более 15 лет), обеспечение таких функций, как управление клапаном, запись и передача данных. Увеличение срока службы батареи является эффективным способом увеличения времени работы измерителя. Однако, если вы подключаете батарею к нагрузке напрямую без промежуточного буфера мощности, сложный профиль нагрузки измерителя может ухудшить характеристики срока службы батареи [1].

Основываясь на потреблении тока, можно разделить профиль потребления нагрузки стандартного счетчика на режим ожидания, режим средней ступени и активный режим. Каждый режим по-разному влияет на срок службы батареи:

— В режиме ожидания потребление составляет от 5 до 100 мкА. В основном это ток покоя (IQ) микроконтроллера и схемы защиты. Хотя абсолютное значение очень мало, оно обычно является основным фактором, влияющим на срок службы измерителя. В режиме ожидания IQ любого подключенного DC/DC преобразователя должен быть в диапазоне наноампер, а утечка любого буфера мощности должна быть небольшой для повышения эффективности.

— В режиме средней ступени потребляется от 2 мА до 10 мА. Аналоговый интерфейс в момент принятия сигнала (RX) обычно вносит свой вклад в эту нагрузку. Эффективность буфера мощности важна для минимизации потерь энергии в этом режиме.

— Активный режим потребляет наибольший ток. В активном режиме нагрузка обычно исходит от управляющей лампы и аналогового входного каскада в каскаде передачи сигнала (TX), для которого требуется от 20 мА до нескольких сотен миллиампер. Непосредственное потребление этого тока от батареи LiSOCI2 приводит к серьезному снижению номинальной емкости.

В таблице 1 показано снижение номинальных характеристик аккумулятора Soft LS33600 по сравнению с номинальной емкостью 1,7 А·ч при различных нагрузках и температурных условиях. При рабочей температуре +20°C ток нагрузки 200 мА приводит к снижению емкости на 42 %. Поэтому батарея никогда не должна питать нагрузку напрямую. Только при использовании буфера мощности с малой утечкой можно ограничить пиковый ток до уровня менее 10 мА.

Таблица 1

Зависимость емкости от значения тока нагрузки для LS33600

Емкость (А*ч)

-40°C

-20°C

+20°C

10 мА

-41,2 %

-17,6 %

Нет снижения

100 мА

-82,35 %

-58,8 %

-23,5 %

200 мА

-

-

-42,0 %

Понижающе-повышающий преобразователь (IQ = 60 нА) TPS61094 помогает продлить срок службы батареи, сохраняя при этом превосходную эффективность в режимах ожидания, промежуточной ступени и активном режиме [2].

Использование TPS61094 имеет три основных преимущества:

Высокий КПД в широком диапазоне нагрузок. TPS61094 имеет средний КПД >90 % для нагрузок от 5 мкА до 250 мА при условиях VOUT = 3,3 В и VIN > 1,5 В. Это обеспечивает эффективное питание в большинстве случаев использования расходомеров.

Ограничивает пиковый ток , потребляемый от батареи. TPS61094 может ограничивать свой пиковый входной ток, когда он работает в режиме Buck_on при зарядке суперконденсатора, а также в дополнительном режиме, когда он питает большую нагрузку на VOUT от батареи. На рис. 1 показано типовое подключение TPS61094, После сброса нагрузки устройство заряжает суперконденсатор постоянным током 10 мА. Когда напряжение суперконденсатора возвращается к 2,0 В, устройство перестает заряжаться, но все еще остается в режиме Buck_on.

Подключение преобразователя TPS61094

Рис. 1. Подключение преобразователя TPS61094

Неизменная энергия суперконденсатора во всем диапазоне температур. Как правило, использование конденсаторов с гибридным слоем (HLC) или конденсаторов с двойным электрическим слоем (EDLC) в качестве буферов мощности улучшает возможности импульсной нагрузки. Однако энергия, хранящаяся в этих пассивных компонентах, зависит от напряжения батареи. Когда температура снижается, напряжение батареи также падает, что ухудшает способность HLC или EDLC к импульсной нагрузке и увеличивает ток питания батареи. TPS61094 устраняет эту проблему, поддерживая стабильное напряжение на суперконденсаторе независимо от температуры.

Полезная энергия в суперконденсаторе определяется емкостью, установленным максимальным напряжением на суперконденсаторе и блокировкой минимального напряжения TPS61094. Чем больше полезной энергии имеет суперконденсатор, тем дольше время работы при постоянной большой нагрузке.

На рис. 2 показано решение с буфером мощности, использующее TPS61094 или только суперконденсаторы соответственно. Для решения TPS61094 напряжение суперконденсатора установлено равным 2 В. При непрерывной подаче нагрузки TPS61094 может потреблять мощность от суперконденсатора до 0,6 В. Таким образом, можно рассчитать доступную энергию суперконденсатора с помощью уравнения 1: где — средний КПД преобразователя [3].

Подключение TPS61094 и HLC/EDLCs решений

Рис. 2. Подключение TPS61094 и HLC/EDLCs решений

(1)

(2)

(3)

В наихудшем случае при -40°C TPS61094 имеет средний КПД 92 % при 150 мА и входном напряжении от 2 В до 0,6 В. Уравнение 2 показывает расчетный результат:

Для решений HLC или EDLC доступная энергия изменяется в зависимости от напряжения батареи. Для тока 10 мА при -40°C напряжение LS33600 снижается до 3 В. В уравнении 3 вычисляется доступная энергию:

Сравнивая результаты между уравнениями 2 и 3, решение TPS61094 имеет вдвое больше доступной энергии, чем решения HLC и EDLC. Это означает, что к нагрузкам может подаваться больше энергии, и снижается пиковый ток, потребляемый аккумулятором в экстремальных условиях. Например, если для управления клапаном используется нагрузка 200 мА при напряжении 3,3 В, решение HLC или EDLC может поддерживать нагрузку только в течение 2,8с. Понижающе-повышающий преобразователь TPS61094 со встроенным суперконденсатором может поддерживать нагрузку до 7,8с при условии, что буфер питания обеспечивает всю нагрузку.

Сложный профиль нагрузки-потребления расходомеров требует буфера мощности, чтобы продлить срок службы LiSOCI2 батарей. Для широкого диапазона условий эксплуатации преобразователь TPS61094 является хорошим выбором для с продления срока службы батареи. Ограничивая пиковый ток, потребляемый от батареи, максимизируется ее емкость и увеличивается доступная энергия суперконденсатора, позволяя системе работать дольше в условиях низких температур, чем решения HLC и EDLC.

Литература:

  1. Hussein Yektaii, Patrick Pratt. Quality of secondary power supplies // Practical Electronics Magazine. 2020. No. 2–3. P.13–16.
  2. Wenhao Wu and Alex Pakosta. Benefits of using a low-Iq buck/boost converter // Journal of Electronics maker. 2021. No. 9–10. P.54–55.
  3. Frank Kearney. Ionistors and their application in microelectronics// Consumer Electronics. 2021. No. 12. P.20–22.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №17 (464) апрель 2023 г.
Скачать часть журнала с этой статьей(стр. 56-60):
Часть 1 (стр. 1-79)
Расположение в файле:
стр. 1стр. 56-60стр. 79
Похожие статьи
Применение на подстанциях систем накопления электрической энергии для улучшения качества электрической энергии
Исследование разряда алкалиновых элементов при резистивной нагрузке
Проектирование прецизионных помехоустойчивых импульсных усилителей токовых сигналов для магнитострикционных преобразователей
Литий-ионные аккумуляторы
Неисправности батарей статических конденсаторов, возникающих при наличии высших гармоник в системах электроснабжения
Особенности проектирования однотактного прямоходового понижающего преобразователя с активным ограничением напряжения
Инсоляция и перспективы развития солнечной электроэнергетики в г. Сочи
Методы сокращения энергопотребления в беспроводных сетях
Разработка беспроводного емкостного датчика уровня топлива на основе технологии Bluetooth с низким энергопотреблением (BLE)
Принципиальные вопросы горизонтальной и вертикальной интеграции конструктивных и технико-технологических решений в условиях комплексной неочевидности реальности конечного интегрированного решения

Молодой учёный