Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

К вопросу кривой эллипса

Математика
05.03.2023
41
Поделиться
Библиографическое описание
Гасанов, И. Р. К вопросу кривой эллипса / И. Р. Гасанов, Э. Б. Бегляров. — Текст : непосредственный // Молодой ученый. — 2023. — № 9 (456). — С. 1-5. — URL: https://moluch.ru/archive/456/100475/.


В статье получено уравнение эллипса через длины полуосей и углов треугольника, вписанного в эллипс. При этом основание АВ треугольника АВС совпадает с осью АВ = 2а, а точка С является произвольной точкой эллипса С(Х, У). Получены также выражения координат Х, У через тригонометрические функции углов треугольника АВС.

The article obtained the equation of an ellipse in terms of the lengths of the semiaxes and angles of a triangle inscribed in it. In this case, the base AB of the triangle ABC coincides with the axis АВ = 2а, and the point C is an arbitrary point of the ellipse C (X, Y). Expressions for the coordinates X, Y are also obtained in terms of the trigonometric functions of the angles of the triangle ABC.

Зададимся целью задать уравнение эллипса через длины полуосей ( а и b или а и с ) и углов α и β полученных треугольников, соединяющих точки А(- а ; 0), В( а ; 0) и произвольную точку С( х;у ) эллипса (см. рис.1).

.

Рис. 1.

Тогда АС = , BC = , AB = 2 a , (1)

∠A = α, ∠B = β.

С другой стороны, F 1 C + F 2 C = 2 a

или

+ = 2 a (2)

Как известно из (2), получается формула для эллипса:

+ = 1 (3)

После замены а 2 с 2 = b 2 получается

+ = 1 (4)

А теперь выразим х через тригонометрические функции α и β.

.

Рис. 2.

Пусть точка С находится на эллипсе, а точки А 1 , С 1 на окружности. Точки А 1 , С 1 получены пересечением соответственно сторон ВС и АС с окружностью диаметром 2 а . По теореме Пифагора для прямоугольных треугольников АА 1 В и АС 1 В можно написать следующие уравнения:

2 = (2 2

2 = (2 2 (5)

Здесь q 2 = 2 = ( + 2

Если в последнем равенстве учесть а 2 = - b 1 cosγ, то получаем:

q 2 = 2 . Аналогичным образом получаем, что b 2 = a 1 cosγ

p 2 = 2 .

Таким образом имеем:

2

2 (6)

С другой стороны, из треугольников АА 1 В и АС 1 В можно получить зависимости q = 2 a sinβ, p = 2 a sinα. Подставляя эти выражения в (6), получаем:

4 4 2 ( - 2 = 4

4 4 2 ( - 2 = 4 (7)

Если эти уравнения разделим друг на друга, то получим

(8)

Используя теорему косинусов для треугольника АСВ, получаем

4 = (9)

Также можно получить

2 + 2 -

+2 ax — (10)

Решая систему уравнений (9) и (10), получаем:

+ 2

2

(

Если разделим последние два уравнения друг на друга, то получим:

(11)

Учитывая (8) в уравнении (11), преобразуем его в следующий вид:

(12)

Как известно по теореме синусов:

(13)

Тогда, учитывая (12), получаем

(14)

Из (14) имеем

1+

x= (15)

А теперь выразим y через a и углы треугольника АВС. Как видно из

откуда у=а 1 sin β (16)

С другой стороны, по теореме синусов:

(17)

Учитывая (17) в (16), получаем

y = (18)

Таким образом мы в формуле эллипса =1 для переменной х получаем

x = (19)

Для переменной у получаем

y = (20)

Если подставим (19) и (20) в (4), мы получаем:

β =

=

α)) =

+sinβcosα sinαcosβ) =

2

= (21)

Последнее уравнение является формулой эллипса. Действительно, как видно из рис.2, tgα = .

Тогда tgα tgβ = =

Таким образом в данной статье получены некоторые формулы, связанные с кривой эллипса.

Литература:

  1. M. X. Nəsibov. Qəribə əyrilər. Elmi-kütləvi ədəbiyyat. Bakı,”Maarif” nəşriyyatı, 1985-ci il.-156 səh.
  2. Овчинников А. В. Алгебра и геометрия в вопросах и задачах: Основы алгебры и аналитической геометрии. Изд. Стереотип. И RSS. 2022, 288 c. ISBN 978–5-9519–2839–9
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №9 (456) март 2023 г.
Скачать часть журнала с этой статьей(стр. 1-5):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 1-5стр. 73

Молодой учёный