Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Формула для числового образа трехдиагональной матрицы размера 3х3

Математика
12.05.2016
309
Поделиться
Библиографическое описание
Дилмуродов, Э. Б. Формула для числового образа трехдиагональной матрицы размера 3х3 / Э. Б. Дилмуродов. — Текст : непосредственный // Молодой ученый. — 2016. — № 10 (114). — С. 3-5. — URL: https://moluch.ru/archive/114/29279/.


В данной работе рассматривается симметричная трехдиагональная матрица размера 3х3. Используя формулы Кардано для решения кубического уравнения, находим формулу для числового образа.

Пусть Н гильбертово пространство и линейный оператор с областью определения . Тогда множество называется числовым образом оператора [1–3].

Пусть множество комплексных чисел. В пространстве рассмотрим матрицу вида:

размера , где произвольные вещественные числа, а произвольные комплексные числа.

Положим:

;

;

.

Теорема 1. Если то , то

.

Доказательство. Найдем собственные числа матрицы . Для этого мы должны знать решение уравнения:

(1)

где . Приведем некоторые сведение о решение этих уравнений. Положим:

.

Возможны три случая:

  1. Если , то уравнение (1) имеет одно вещественное и два взаимно сопряженных комплексных решения.
  2. Если , то уравнение (1) имеет три вещественных решения и по крайней мере два из них равны:

при , числа ;

при , числа ;

при , числа является решениями уравнения (1). Здесь , т. е. из следует, что .

  1. Если ,то уравнение (1) имеет три разных решений следующего вида:

где

.

Используя свойства косинуса имеем . Заметим, что:

если , то уравнение (1) имеет два положительные и одно отрицательное решение;

если , то уравнение (1) имеет одно положительное и две отрицательные решения;

если , то все решения уравнении (1) являются вещественными тогда и только тогда когда .

Собственные числа матрицы являются нулями характеристического уравнения

(2)

Найдем решение уравнения (2).

Делая замену переменных уравнение (2) перепишем в виде:

.

После простых вычислений имеем:

(3)

Обозначая

;

получим, что уравнение (3) имеет вид .

Решение этого уравнения имеет вид:

.

Здесь .

В этом случае решение уравнения (2) имеет вид:

.

Причем для имеет место соотношение .

Следовательно, имеет место равенство , где

.

Теорема доказана.

Литература:

  1. Hausdorff F. Der Wertvorrat einer Bilinearform // Math. Z., 3:1 (1919), pp. 314–316.
  2. Heydari M. T. Numerical range and compact convex sets // Rend. Circ. Mat. Palermo, 60 (2011), pp. 139–143.
  3. Langer H., Markus A. S., Matsaev V. I., Tretter C. A new concept for block operator matrices: the quadratic numerical range // Linear Algebra Appl., 330:1–3 (2001), pp. 89–112.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №10 (114) май-2 2016 г.
Скачать часть журнала с этой статьей(стр. 3-5):
Часть 1 (cтр. 1 - 114)
Расположение в файле:
стр. 1стр. 3-5стр. 114

Молодой учёный