Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Двусторонние оценки для вязкоупругих сред

Математика
07.12.2015
69
Поделиться
Библиографическое описание
Букенов, М. М. Двусторонние оценки для вязкоупругих сред / М. М. Букенов, Л. С. Фазылова. — Текст : непосредственный // Молодой ученый. — 2015. — № 24 (104). — С. 1-4. — URL: https://moluch.ru/archive/104/24173/.

 

Рассмотрим в области , с границей и  — цилиндр, с боковой гранью .

Ставится задача найти решение следующих уравнений [1], [2]:

(1)

(2)

(3)

(4)

здесь (1) — уравнение движения, (2) — закон импульса, (3), (4) — уравнения состояния: (3) — вязкоупругая среда Максвелла, (4) — уравнение Кельвина-Фойгта; B — матрица коэффициентов Ламе, симметричная, положительно определенная, С — матрица, состоящая из коэффициентов вязкости, симметричная, положительно определенная,  — диагональная матрица,  — вектор скоростей, * — означает транспонирование,  — вектор напряжений,  — вектор деформаций; опорный оператор R определяется следующим образом [1]:

(5)

Матрицы В, С,  — перестановочны.

К соотношениям (1)-(4) нужно добавить соотношения перемещение-деформации: . Вектор перемещения u и скорости v связаны соотношением .

После несложных преобразований приходим к уравнениям:

(6)

для среды Максвелла,

(7)

для среды Кельвина-Фойгта.

Решение задачи (1)-(3), (6) будем искать в цилиндре . При этом

(8)

(9)

Предположим, что на боковой поверхности цилиндра Q искомое решение удовлетворяет одному из приведенных ниже однородных краевых условий;

(10)

Начальные данные (8), (9) и краевые условия (10) будем считать согласованными. При этом задачу (1)-(3), (6) назовем задачей (I), а задачу (1), (2), (4), (7) — задачей (II).

Как известно, если , то справедлива оценка

(11)

В соответствии с методом фиктивных областей [3], [4], дополним исходную область D некоторой областью до составной области с границей .

В составной области рассмотрим задачу:

(12)

где  — малый параметр и

На границе ставятся условия согласования:

(13)

где n — вектор нормали к границе , знаки «+» или «-» означают стремление функции изнутри и извне границы . Параметр P принимает значение 1 или -1.

Тогда справедлива следующая теорема.

Теорема 1. Верна оценка

(14)

Здесь и соответствуют решению задачи (12), (13) и отвечают значению параметра и .

Доказательство. Рассмотрим следующие ряды: в области Q, в области . Ряды , являются абсолютно сходящимися при достаточно малых .

В самом деле, для определения функций , получаем

(15)

Решения (15) имеем из теории неоднородных задач [5]

(16)

Далее получим сходимость рядов ,

Учитывая (11), (16), получим:

(17)

где .

Если , то ряд абсолютно сходится в Q, а ряд абсолютно сходится в норме .

Теорема 2. Если , то справедлива следующая оценка:

(18)

где и  — решения задачи (12), (13) при и ,  — решение задачи (I).

Доказательство. На основании теоремы 1 имеем

(19)

где , соответствуют параметру .

Соответственно на основании теоремы 1 имеем

(20)

где , соответствуют параметру .

Очевидно, что  — решение задачи I.

Введем обозначения

тогда для функции получим задачу

Отсюда получаем или .

Введем функцию где удовлетворяет задаче

Отсюда получаем и, следовательно, .

Далее, определим имеем . Продолжая аналогичные рассуждения, получим

(21)

Учитывая (21), подставляя в (19), (20), получим в Q:

(22)

Используя (17) и разложение (22), получаем при

Для задачи II в соответствии с методом фиктивных областей построим вспомогательную задачу

(23)

Дополним начальными и краевыми условиями из (12) и условия сопряжения (13).

Для задачи II верна

Теорема 3. Для верна оценка

.(24)

Доказательство аналогично доказательству теоремы 1.

Кроме того, справедлива

Теорема 4. Если , то верна следующая оценка

(25)

где  — решение задачи II, и  — решения задачи (23) при и .

Доказательство аналогично доказательству теоремы 2.

Запись исходных задач в терминах оператора и сопряженного , обусловлены возможностью построения консервативных разностных схем, допускающих реализацию с помощью схем расщепления.

 

Литература:

 

  1.                Букенов М. М., Кузнецов Ю. А. Об одной спектральной задаче теории упругости. // ВЦ СО АНСССР, Препринт, Новосибирск, 1981г. — 13 с.
  2.                Букенов М. М. Постановка динамической задачи линейной вязкоупругости в скоростях напряжениях. // Сиб. Журнал вычислительной математики РАН. Сиб. Отд. — Новосибирск, 2005. — т.8, № 4. — с. 289–295.
  3.                Коновалов А. Н. Об одном варианте метода фиктивных областей. // В кн. Некоторые проблемы вычислительной и прикладной математики. — Новосибирск, 1975, с. 191–199.
  4.                Букенов М. М. Метод фиктивных областей для среды Максвелла. // Численные методы и пакеты программ для решений уравнений математической физики. — Новосибирск, 1985 — т. 4, № 2. — с. 117–126.
  5.                Ладыженская О. А. Линейные и квазилинейные уравнения параболического типа. — Москва: Наука. — 1967. — 736 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №24 (104) декабрь-2 2015 г.
Скачать часть журнала с этой статьей(стр. 1-4):
Часть 1 (cтр. 1 - 119)
Расположение в файле:
стр. 1стр. 1-4стр. 119

Молодой учёный