В данной работе строится кинематическая модель шестиногого робота, рассматривается обратная задача кинематики построенной модели. Затем решается задача генерации походки, в рамках которой находятся траектории движения ног гексапода.
Ключевые слова: робототехника, робот, гексапод, кинематика, кинематическая модель, прямая задача кинематики, обратная задача кинематики, походка, шаговый цикл.
Введение
Удобство применения роботов в работе породило большое их разнообразие. Существуют колесные и гусеничные роботы, летающие и шагающие. Так, например, шагающие роботы имеют большую проходимость на пересеченной местности, нежели колесные роботы [1]. Среди шагающих роботов шестиногий сочетает в себе устойчивость конструкции и простоту управления. Он может использоваться для работы в труднодоступных или малопригодных для человека местах, например осматривая завалы после катастроф или собирая образцы на других планетах.
Кинематика робота-гексапода
Объектом исследования является шестиногий шагающий робот с платформой в виде равностороннего шестиугольника, в углах которого располагаются трехзвенные конечности, состоящие из промежуточного звена, бедра и голени.
Введем две системы координат: систему координат платформы и систему координат конечности
. Центр первой из них расположен в центре платформы робота, плоскость
совпадает с плоскостью платформы, ось
направлена в точку прикрепления первой ноги, ось
направлена вверх относительно земли перпендикулярно платформе (предполагаем, что робот не переворачивается). Центр второй из них расположен в точке прикрепления ноги, плоскость
также совпадает с плоскостью платформы, ось
направлена от центра платформы к точке прикрепления ноги, ось
направлена, как и
.
Рис. 1. Геометрическая модель ноги робота
Координаты стоп (оконечностей ноги) робота в системе координат конечности (углы показаны на рис. 1):
(1)
Решение обратной задачи кинематики
Мы получили выражение координат стопы через углы сочленений ноги, задачи подобного типа принято называть прямой задачей кинематики [3]. Далее естественно задаться вопросом о возможном обратном преобразовании координат стопы в углы ориентации, то есть провести решение обратной задачи кинематики. Используя геометрический метод [4], разрешим систему (1) относительно . В общем случае решение данной задачи не единственно, но выберем решение, которое соответствует верхнему расположению коленного сустава, как более естественное:
(2)
Последовательно вычисляя , найдем искомое решение системы.
Параметризация походки
Для генерации походки разобьем конечности на две группы: с четными и нечетными номерами. В то время как одна группа ног располагается в воздухе, что соответствует фазе переноса, другая группа ног находится на земле, то есть в фазе опоры. Такая походка соответствует насекомым (например, муравьям и мухам), поэтому называется инсектовидной. Каждая фаза длится одинаковое время T. Разница фаз групп ног также составляет T. Рассмотрим шаговый цикл ноги гексапода. Траектория конечности в локальной системе координат представляет собой замкнутую кривую. Данную кривую можно условно разделить на две части, которые соответствуют фазе переноса ноги и фазе опоры ноги. При переносе конечности из одной точки в другую выбор траектории может быть осуществлен произвольным образом, так как стопа находится в свободном движении. В данной работе в качестве траектории переноса ноги используется полуэллипс. В фазе опоры нога движется по опорной поверхности вдоль прямой в направлении, обратном движению всего механизма.
Фаза переноса
Параметризация эллипса в системе координат конечности выглядит следующим образом:
где:
− — полупериод одного шага, то есть время, за которое происходит перестановка одной тройки ног,
− — расстояние от платформы гексапода до земли,
− и
— большая и малая полуоси эллипса соответственно.
Зависимость параметра τ от времени принята на основе работы [5]. Такой ее вид обеспечивает постановку ноги на землю с нулевой конечной скоростью, что позволяет избежать ударов.
Идея организации походки заключается в том, что плоскость траектории движения каждой стопы ставится под таким же углом к оси (ось системы координат платформы робота), как и направление движения механизма к этой оси. Угол, необходимый для постановки i-ой ноги в нужном направлении, равен:
где — угол между направлением движения гексапода и осью
.
Для постановки плоскости траектории стопы гексапода нужным образом, проведем следующие действия: параллельным переносом сдвинем эллипс в плоскость , домножим на матрицу поворота на угол
, сдвинем эллипс по оси
до достижения его начальной точкой точки
. Полученные координаты стоп ног:
(3)
где .
Фаза опоры
Для нахождения части траектории, соответствующей фазе опоры ноги, соединим конечные точки эллипса. Уравнение соответствующей прямой можно записать в параметрическом виде:
(4)
где .
Зависимость параметра от времени выбрана по аналогии с параметром τ, таким образом в граничных точках скорость обращается в ноль, следовательно, проскальзывание отсутствует.
Подставляя в систему уравнений (2) в качестве параметризации
из системы (3) и
из системы (4), получим аналитический вид выражений углов в сочленениях гексапода от времени для фазы переноса и фазы опоры соответственно.
Заключение
Исследована кинематическая модель робота-гексапода, с помощью которой можно определить координаты стоп в зависимости от обобщенных координат. Решена обратная задача кинематики. В качестве походки выбрана походка, определяемая движением ног по тройкам (инсектовидная). Задана параметризация движения стопы в форме полуэллипса. Найдены соответствующие ей уравнения, которые позволяют осуществлять шаговый цикл в любом направлении
Литература:
- Potts, Alain & Jaime da Cruz, Jose. (2011). A Kinematical and Dynamical Analysis of a Quadruped Robot. DOI: 10.5772/25500.
- Ермолин В. С., Королев В. С., Потоцкая И. Ю. Теоретическая механика. Кинематика. СПб: ВВМ СПбГУ, 2012.
- John J. Craig. Introduction to Robotics: Mechanics and Control (3rd Edition). Pearson, 2004.
- Пименов В. Г., Ложников А. Б. Численные методы. Часть 2. Издательство Уральского университета, 2014.
- Павловский, В.Е., Панченко А. В. Модели и алгоритм управления движением малого шестиногого робота. Мехатроника, автоматизация, управление. — 2012. — № 11. — С.23 –28.