Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Обоснование эффективности применения пиролизной установки для отопления теплиц

Технические науки
05.10.2015
708
Поделиться
Библиографическое описание
Узаков, Г. Н. Обоснование эффективности применения пиролизной установки для отопления теплиц / Г. Н. Узаков, Х. А. Давланов, Ю. Г. Узакова. — Текст : непосредственный // Молодой ученый. — 2015. — № 19 (99). — С. 219-223. — URL: https://moluch.ru/archive/99/22325/.

Рассмотрены возможности применения пиролизной установки для отопления теплиц. Даны результаты расчетов экономической эффективности применения пиролизной установки в автономных системах отопления теплиц.

Ключевые слова: эффективность, биомасса, пиролиз, биотоплива, отопление.

 

Разработана и экспериментально исследована пиролизная установка для термической переработки биомассы и местных органических отходов [1]. В результате пиролиза растительной биомассы образуется горючий газ, высокоэнергетические жидкие продукты и кокс. С энергетической точки зрения три выходных продуктов пиролиза биомассы: кокс (уголь), смола (бионефть) и биогаз являются энергетическими ценными веществами. Эти вещества имеют высокую калорийность как альтернативного топлива. Вместе со многими выгодами от пиролизной установки мы получем большое количество тепла, которое можно использовать в разных телоэнергетических целях. При прямом сжигании полученных альтернативных топлив можно получить теплоту, использование в системах отопления и горячего водоснабжения дает большие экономии традиционных топливно-энергетических ресурсов. Например, в прямом сжигании только полученного 1 м3 биогаза в газовых водогрейных отопительных котлах дает 5–7 кВт/ч или 18–25,2 МДж тепловой энергии. Эти цифры указывают на то, что мы имеем очень большие запасы тепловой энергии, которая просто выбрасываются и приносят огромный экологический вред в атмосферу.

Поэтому нами предлагается тепловую энергию от пиролизной установки, полезно использовать в сельском хозяйстве в следующих направлениях:

-          отопление сельских жилых домов и помещений, фермерских домов и полевых станов, обеспечение альтернативным топливом;

-          горячее водоснабжение для бытовых нужд;

-          отопление теплиц и хранилищ в зимой;

-          сушка плодов и фруктов и т. п.

В целях сравнительного анализа нами исследованы потребление традиционного топлива (природного газа) в период отопления (ноябрь-март 2015 года) жилого дома с отопительной площадью 200 м2, которая израсходована 2600 м3 природного газа. Расход газа в месяц 2600:5=520 м3, в среднем в сутки были сожжены 18–20 м3 природного газа. Таким образом, 1 м3 газ обеспечить теплом около 10 м2 жилой площади в сутки (все измерения ежедневно измерялись электронным газовым счетчиком марки Novator). Аналогичные измерении произвели для теплицы с полезной площадью 200 м2 с пленочным покрытием в условиях города Карши. В отопление теплицы 200м2 зимой для создания требуемого внутреннего микроклимата были израсходованы в сутки до 100–120 м3 природного газа. То есть 1 м3 природным газом можно обеспечить теплом 1,66 м2 площади теплицы. Или на 1 м2 площади теплицы израсходуется около 0,5–0,6 м3 природного газа. Как видно, из проведенных исследований и расчетов сооружения защищенного грунта-теплицы являются биолого-теплотехническим устройствам, которые требуют огромные количество традиционного топлива для отопления. Сама теплица является пассивной солнечной отопительной системой, однако при любом регионе нашей Республики только днем 30–35 % отопительную нагрузку можно покрыть за счет прямого использования солнечной энергии в зависимости от метеорологических условий конкретного года. Поэтому в настоящее время решение проблемы энергообеспеченности теплиц является актуальной. Один из вариантов решения этой проблемы является применение пиролизных установок с эффективным использованием энергии биомассы при их термической переработки. Предлагается использовать пиролизную установку в небольших фермерских хозяйствах в целях отопления жилых помещений и теплиц. Для этого необходимо знать потребности в тепловой энергии теплицы и произвести теплотехнические расчеты. Ниже приведены результаты теплотехнического расчета гелиотеплицы с полезной площадью 200 м2.

К важным энергетическим характеристикам гелиотеплиц относятся коэффициенты ограждения  и аккумулирования тепла энергии солнечного излучения , приведенный коэффициент теплопередачи ограждения , тепловая мощность системы отопления, тепловые потери, приток солнечной радиации внутрь теплиц, расход топлива на отопление и. т.д. Тепловую мощность системы отопления теплицы, следует определять в результате решения уравнений теплового баланса с учетом происходящего тепломассообмена на поверхности почвы, ограждений и растений. Тепловой режим теплицы рассматривается с участием находящейся в ней биомассы и влагообмена. Делается это для неблагоприятных ночных условий эксплуатации теплицы.

Практически мощность системы отопления теплицы можно определить по уравнению

                                                                                                  (1)

где  — теплопотери через наружные ограждения — стены и покрытие (скаты);  — теплопотери через грунт, рассчитанные по известному способу с разделением его площади на зоны (ориентировочно  составляют около 0,2 );  — теплозатраты на нагревание инфильтрующегося воздуха.

Известно, что тепловые потери гелиотеплицы зависят от коэффициента ограждения, который вычисляли по соотношению

                                                                                                               (2)

где  — общая светопрозрачная поверхность ограждения;  — инвентарная (полезная) площадь гелиотеплицы.

Применив упрощенный способ расчета теплового баланса теплицы, пренебрегая влиянием тепловых потоков через защищенный грунт, можем определить тепловую мощность системы отопления [2].

                                                  (3)

или

                                                                                                           (4)

где – тепловая мощность системы отопления, – потери тепла через ограждение, –потери тепла вследствие воздухообмена,  — приток солнечной радиации внутрь теплиц за отопительный период, К — коэффициент теплопередачи ограждения, Кпр=FогрK/Fи, Кпр — приведенный коэффициент треплопередачи ограждения; tв — расчетная температура воздуха внутри теплицы, 17,2 оС; tн — среднесуточная температура наружного воздуха за отапливаемый период (ноябрь — март), 4,6 оС; Кинф — коэффициент инфильтрации, равный 1,1…1,2 [2].

Приток солнечной радиации внутри теплиц за отопительный период:

,                                                                                                   (5)

где,  — среднесуточное значение падающей за отопительный период суммарной солнечной радиации;  — коэффициент лучепоглощения поверхности листьев растений и почвы;  — коэффициент пропускания солнечной радиации светопрозрачного ограждения теплицы;  — площадь пола теплицы; - продолжительность отопительного периода.

Если , тогда при ясной погоде не требуется дополнительный обогрев теплицы с применением традиционных систем отопления. Если , тогда требуется дополнительный обогрев теплицы с использованием органического топлива в котельной. В табл. 1. приведены результаты расчетов по определению тепловых потерь и среднемесячных суточных показателей энергообеспеченности гелиотеплицы площадью 200 м2 в условиях г. Карши, для отдельных периодов отопительного сезона. В нашем случае коэффициент ограждения , среднее значение коэффициента теплопередачи светопрозрачного ограждения К=6,5 Вт/(м2·оС); , .

Таблица 1

Среднемесячные суточные показатели энергообеспеченности гелиотеплицы в условиях ясной погоды для г. Карши

Дата

, кДж/(м2·день)

 кДж/(м2·день)

 кДж/(м2·день)

15/XI

10,6

8777,13

6899,56

1877,57

15/XII

4,8

15656,51

5151,46

10505,05

15/I

3,6

17079,83

5062,18

12017,65

14/II

5,3

15063,46

5981,76

9081,7

15/III

10,1

9370,18

7928,06

1442,12

15/IV

17,9

118,61

11856,38

-

 

Мощность отопительной системы для тепличной части сооружения определяется по формуле:           (6)

где,  — тепловой поток вентиляционных выбросов холодильной камеры;  — тепловая мощность горячей воды, полученная при утилизации тепла уходящих газов.

Сезонный расход топлива (природного газа) на отопление теплицы полезной площадью 200 м2 определяли по формуле:  (7)

где 1,15 — коэффициент, учитывающий потери тепла в трубопроводах; τ — продолжительность отопительного периода для г. Карши, равная 132 суток; – рабочая низшая теплота сгорания топлива (природной газ Шуртанского месторождения), равна 8626 Ккал/нм3, η–коэффициент полезного действия котельной 0,8. В соответствии с формулой (7) расход газа в отопительной период при ночном режиме составил 15563,08 м3 следовательно, для поддержания нормальной температуры внутри теплицы нужно 117,9 м3/сутки. Результаты расчета расходов топлива на отопление гелиотеплицы приведены в табл.2.

Таблица 2

Расход топлива на отопление гелиотеплицы с площадью 200 м2 в условиях г. Карши

Месяцы

Расход топлива на отопление гелиотеплицы при ясной погоде (при дневной работе теплицы), м3/мес.

Расход топлива на отопление гелиотеплицы при ночном режиме, м3/мес.

XI

449,12

2099,55

XII

2512,87

3745,14

I

2874,70

4085,61

II

2027,57

3363,06

III

344,96

2241,41

Всего за сезон

8209,22

15563,08

 

Для оценки эффективности применения пиролизной установки для теплоснабжения локальных потребителей определены потребности в тепловой энергии и биогазе систем отопления гелиотеплиц в условиях г. Карши (табл. 3). Анализ расчетных и эксплуатационных показателей гелиотеплиц в условиях г. Карши показывают, что пиролизная установка ёмкостью биореактора с 0,5 м3 полностью обеспечивает тепловую нагрузку на отопления при дневном режиме гелиотеплиц с полезной площадью 200 м2. Таким образом, применение даже одного продукта пиролиза биомассы (только биогаза) позволяет экономить в отопление гелиотеплиц с площадью 200 м2 до 12500 м3 традиционного топлива (природного газа) или 15,35 тонна угля в отопительный сезон.

Выше приведенные результаты расчетов и исследований соответствует к отопительному периоду (ноябрь-март). Если учитываем, что пиролизная установка вырабатывает альтернативного топлива (биогаз, уголь и жидкое топливо) в течение 350 дней ежегодно, еще 15 дней отводится на их профилактическое обслуживание и текущий ремонт установки. Тогда экономия условного топлива в год за счет выработанного биогаза, угля и жидкого топлива можно определить по формуле:

∆B=Qб ×350/29,31 + Qж ×350/29,31+ Qуг ×350/29,31                                                (8)

Где, Qб, Qж, и Qуг — выработка пиролизной установкой полезной энергии за счет полученного биогаза, жидкого и твердого альтернативного топлива в сутке, МДж.

Qб =120 м3 /cут. х Qн р = 120х25 МДж/м3=3000 МДж/сут.

Qн р = 25 МДж/м3 — теплота сгорания полученного биогаза.

Аналогичные расчеты для жидкого и твердого топлива при переработки экскременты крупного рогатого скота:

Qж =300 кг /cут. х Qн р = 300х25 МДж/кг=7500 МДж/сут.

Qуг =180 кг /cут. х Qн р = 180х30 МДж/кг=5400 МДж/сут.

Общая экономия условного топлива за счет круглогодичного использования пиролизной установки для выработки альтернативного твердого, газобразного и жидкого топлива: ∆B=3000× 350/29,31 + 7500 ×350/29,31+ 5400 ×350/29,31 =189867 кг условного топлива или 189,87 тонна условного топлива.

Таблица 3

Потребность в тепловой энергии, биогазе и других природных органических топлив для отопления гелиотеплицы при дневном режиме в условиях г. Карши (с полезной площадью 50, 120 и 200 м2)

Показатели

Отапливаемая площадь гелиотеплицы, м2

50

120

200

Тепловая энергия, МДж/год

75000–120000

195000–240000

360000–450000

Биогаз, м3:

в год (в сезон)

в сутки

 

3000–4800

20–32

 

7800–9600

52–64

 

14400–18000

96–120

Природный газ, в м3

в период отопления:

в сутки:

 

2083–3334

14–22,2

 

5416–6667

36–45

 

10000–12500

66,7–83

Уголь, в кг:

в период отопления:

в сутки:

 

2558–4094

17–27

 

6653–8188

44–54,6

 

12282–15353

82–102

Дрова, в кг:

в период отопления:

в сутки:

 

4687–7500

31–50

 

12187–15000

81–100

 

22500–28125

150–187

 

Произведем оценочный расчет для определения экономической эффективности использования пиролизной установки для фермерского хозяйства. Разработанная установка в год производить: а) биогаза — 42000 м3;б) жидкого биотоплива — 105000 кг; г) твердого топлива — 63000 кг.

Стоимость 1 тонн угля — 100 000 сум, тогда 63 х 100 000 = 6 300 000 сум;

Стоимость жидкого биотоплива: 105х103 х 1000 = 105 000 000 сум;

Стоимость газа 42000 · 208,92 = 8 774 640 сум (с 1.10.2015г).

Капитальные затраты на изготовление и монтаж предложенной установки составляет 30 млн. сум. с учетом установки комплекта теплотехнических измерительных приборов. Годовые эксплуатационные затраты складываются от затрат топлива на собственные нужды, на воды, электроэнергии и на обслуживание. Всего эксплуатационные затраты составляет около 27 млн. сумм. Чистый доход составить: (105 000 000+6 300 000+8 774 640)-27 000 000=93 000 000 сум.

Срок окупаемости капитальных вложений: 30 000 000:93 000 000= 0,32 года. Коэффициент окупаемости: 1/0,32=3,12. Если принимать, что в течение 5 лет нормативный коэффициент окупаемости капитальных вложений будет находится на уровне Е=0,2.

Тогда, интегральный экономический эффект в течение 5 лет составить: Эинт=(93 000 000х1,0+93 000 000х 0,83 + 93 000 000 х 0,69 +93 000 000 х 0,58 + 93 000000х0,48) — 30 000 000 = 303 000 000 сум.

Дисконтированный срок окупаемости составить:

LRR=30 000 000/ [(93 000 000х1,0+93 000 000х 0,83 + 93 000 000 х 0,69 +93 000 000 х 0,58 + 93 000000х0,48)/5]=0,5 года. С учетом инфляционных рисков срок окупаемости установки можно принимать 1-м годам.

Таким образом, оценочный технико-экономический расчет показывает, что использование пиролизных установок является энергосберегающей, экономически эффективной технологией для автономного топливо- и энергоснабжения фермерских хозяйств, теплиц и частных домов фермеров.

 

Литература:

 

1.                  Узаков Г. Н., Раббимов Р. Т., Давланов Х. А., Алиярова Л. А., Узакова Ю. Г. Расчет теплотехнических и конструктивно-технологических параметров пиролизной установки для термической переработки биомассы. //Молодой ученый № 18 (77). — 2014., с.303–306.

2.                  Узаков Г. Н. Энергоэффективные системы теплохладоснабжения плодоовощехранилищ. — Германия: г. Саарбрюккен, LAP Lambert Academic Publishing, 2013г. — 268 с.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №19 (99) октябрь-1 2015 г.
Скачать часть журнала с этой статьей(стр. 219-223):
Часть 2 (cтр. 107 - 243)
Расположение в файле:
стр. 107стр. 219-223стр. 243

Молодой учёный