Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Реализация межпредметной связи математики и информатики при изучении математики в основной школе

Педагогика
15.06.2015
1658
Поделиться
Аннотация
Данная статья посвящена проблеме реализации межпредметной связи математики и информатики при изучении математики в основной школе
Библиографическое описание
Жигулина, О. В. Реализация межпредметной связи математики и информатики при изучении математики в основной школе / О. В. Жигулина, Н. Г. Турусова. — Текст : непосредственный // Молодой ученый. — 2015. — № 12 (92). — С. 703-705. — URL: https://moluch.ru/archive/92/20390.

Данная статья посвящена проблеме реализации межпредметной связи математики и информатики при изучении математики в основной школе.

Ключевые слова: межпредметные связи, график.

 

В условиях обновления и развития системы общего и профессионального образования одной из главных ее целей является формирование научного мировоззрения, целостного представления о мире и месте человека в нём. Особую роль в этих условиях приобретает естественнонаучное образование, так как основу научного мировоззрения составляет естественнонаучная картина мира, которая является результатом интеграции знаний физики, химии и биологии, астрономии и других наук.

В связи с этим актуальной становится проблема содержательного и процессуального пересмотра естественнонаучного образования, в котором должны быть максимально реализованы межпредметные связи, что существенно облегчит изучение смежных дисциплин и, в конечном счете, целостное восприятие окружающего мира, его диалектическое единство и эволюцию.

Проанализировав учебную литературу Н. В. Макаровой можно сделать вывод, что автор в процессе изложения материала по информатике чаще всего прибегает к односторонним содержательным межпредметным связям.

Проанализировав учебную литературу И. Г. Семакина можно сделать вывод, что автор в процессе изложения материала по информатике в равной степени прибегает как к односторонним содержательным, так и к односторонним операционным межпредметным связям.

Проанализировав учебную литературу Угриновича Н. Д., можно сделать вывод, что автор в процессе изложения материала по информатике чаще всего прибегает к односторонним содержательным межпредметным связям.

Сравнивая учебники различных авторов, мы пришли к выводу, что наиболее часто употребляются односторонние содержательные межпредметные связи. Следовательно, именно они являются предпосылкой для эффективного изучения информатики. На наш взгляд учебно-методический комплект под редакцией Макаровой Н. В. — это оптимальный выбор для реализации межпредметных связей информатики и математики в курсе информатики.

Анализ базовых учебников по информатике позволяет сделать вывод о том, что реализация межпредметных связей с математикой осуществляется в основном на уровне односторонних и содержательных связей. Практически отсутствуют многосторонние и методические связи, что позволяет сделать вывод о необходимости усиления межпредметных связей курсов информатики и математики в рамках специально разработанной методики. Так реализацию многосторонних и методических связей, выводящих на уровень теоретических связей предметов математики и информатики можно осуществить на интегрированных уроках и специально разработанных внеклассных занятиях.

Из анализа учебников по информатике и математике видно, что их содержание не всегда соответствует друг другу: присутствуют темы, изучаемые в информатике раньше, чем темы математики, на материал которых опирается их содержание. Следовательно, учителю информатики необходимо при разработке собственной программы проанализировать программу учителя математики и соответствующие ей учебники для построения логики изучения своего предмета с учетом межпредметных связей информатики и математики.

Остановимся более подробно на методике построения графиков функций, так как очевидна межпредметная связь с информатикой.

Существуют определенные методы построения графиков функций в математике. График функции — это множество точек, у которых абсциссы являются допустимыми значениями аргумента х, а ординаты — соответствующими значениями функции y.

Если буквально следовать определению, то для построения графика некоторой функции нужно найти все пары соответствующих значений аргумента и функции и построить все точки с этими координатами. В большинстве случаев это сделать практически невозможно, так как таких точек бесконечно много. Поэтому обычно исследуют функцию, что даёт возможность найти область определения и область изменения функции, области её убывания или возрастания, асимптоты, интервалы знакопостоянства и т. д.; находят несколько точек, принадлежащих графику, и соединяют их плавной кривой. Однако при построении графиков многих функций часто можно избежать проведение подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика.

Для построения графика функции y=f(x)+b (где y=f(x) — простейшая функция, график которой нам известен) следует построить график функции y=f(x), причём горизонтальную ось начертить штриховой линией и затем сдвинуть её на b единиц вниз, если b>0 и на b единиц вверх, если b<0. Это и будет истинная ось х-ов; полученный в новой системе координат график является графиком функции y=f(x)+b.

Большой интерес у учащихся вызывают обобщающие уроки математика — информатика («Графический способ решения систем уравнений в среде Microsoft.Excel, Open.Calc» 9 класс, «Решение неравенств с одной переменной» 8 класс, «Решение уравнений» 9 класс, «Решение квадратных уравнений» 8 класс, «Графики функций и их свойства» 9 класс, «Циклические алгоритмы. Построение графиков тригонометрических функций» 10 класс). Такие уроки используются в тех случаях, когда знание материала одних предметов необходимо для понимания сущности процесса, явления при изучении другого предмета.

На уроках математики в 7 классе можно использовать следующие задания.

Задание 1.

В одной системе координат построить графики функций.

у= 2х у=4x

y=-3x

y= y=x

y=x

Глядя на график, сделать вывод о зависимости положения графика функции прямой пропорциональности от коэффициента /k/.

Вывод:1) если k>0, то график находится в I и III координатных четвертях, если k<0, то во II и IV

2)если /k/>1, то график приближается к оси OY.

/k/<1, то график приближается к оси OX.

Задание 2.

В одной системе координат построить графики функций.

y= 2x

y=2x+3

y=2x-2

Сделать вывод о взаимном положении графиков линейной функции на плоскости и выдвинуть гипотезу, почему это может быть? Как проверить эту гипотезу?

Вывод: графики параллельны, у них одинаковый коэффициент k=2.Построить еще один график с тем же коэффициентом y=2x-4,5.Проверить гипотезу.

Рассмотрим примеры заданий для 9-го класса.

Задание 1. Построить в одной и той же системе координат графики функций:

y=x2

y= x2+3 y=(x-5)2 y=(x-3)2+1

y= x2–4 y=(x+3)2

и сделать вывод о соответствующих преобразованиях графиков функций.

Вывод: 1) если k функции +b, то ­

—b, то ¯

Если k аргументу +а, то ¬

—а, то ®

Задание 2. Иллюстрация графического способа решения уравнений

x3+x-4=0

x3=-x+4

Построить в одной системе координат графики функций

y= x3 y=-x+4 найдем точку пересечения. Ее абсцисса –корень уравнения.

Задание 3. Графический способ решения систем уравнения

1)

(4 решения)

2)  Û

3)

Рассмотрим более подробно, как с помощью Open.Calc решить последнюю систему уравнений.

Для графической визуализации данных в электронных таблицах используются диаграммы (круговые, линейчатые и т. д.). Диаграммы наглядно отображают зависимость между данными, что облегчает их восприятие и помогает при анализе и сравнении данных.

Для построения диаграммы необходимо выполнить следующие шаги:

1.      Выделить диапазон ячеек, содержащих необходимые данные (если данные находятся в несмежных ячейках, то их выделяют, удерживая нажатой клавишу Ctrl).

2.      Запустить Мастер диаграмм с помощью команды Вставка → Диаграмма.

3.      Выбрать тип диаграммы.

4.      Уточнить детали отображения диаграммы, ввести заголовок и др.

5.      Нажать кнопку Готово. При необходимости изменить формат подписей данных, цвет заливки областей диаграммы и т. п. (используя для этого команду Свойства объекта контекстного меню).

6.      Щелкнуть мышкой вне области окна диаграммы и при необходимости изменить

Интеграция в обучении позволяет выполнить и развивающую функцию, необходимую для всестороннего и целостного развития личности учащегося, развития интересов, мотивов, потребностей к познанию.

Использование межпредметных связей в обобщающем повторении играет большую положительную роль не только в повторении и закреплении определенных тем и разделов, но и в усвоении важнейших обобщающих понятий, встречающихся в разных предметах, и может осуществляться в таких формах, как олимпиады, открытые занятия, тесты, деловые игры и т. д.

 

Литература:

 

1.                  Бакирова А. Ю. Дифференцированное обучении (методические рекомендации), ТГПУ, 2009.

2.                  Бакирова А. Ю. Методика преподавания математики. Учебное пособие. — Т., 2010.

3.                  Волошенко Л. Н. Межпредметные связи на уроках информатики//По материалам семинара, 2009.

4.                  Гриншкун В. В., Левченко И. В. Школьная информатика в контексте фундаментализации образования. — М.: Московский городской педагогический университет, 2008. — С.131–136

5.                  Гурьев А. И. Методологические основы построения и реализации дидактической системы межпредметных связей в курсе физики средней школы: дис. д-ра пед. наук. [Текст]/А. И. Гурьев, Челябинск, 2008. — 372с.

6.                  Кузнецова Л. Г. Реализация межпредметных связей в учебниках математики для непрофильных специальностей / Л. Г. Кузнецова// Вестник Тамбовского государственного университета. — 2009. — Выпуск 3. — С. 72–80.

7.                  Левченко И. В., Карташова Л. И. Задачи межпредметного характера как средство развития познавательной мотивации старшеклассников на уроках информатики // Информационные технологии в науке и образовании: Сборник научных трудов. — Воронеж: Научная книга, 2009. — С.68–73.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №12 (92) июнь-2 2015 г.
Скачать часть журнала с этой статьей(стр. 703-705):
Часть 7 (cтр. 685 - 783)
Расположение в файле:
стр. 685стр. 703-705стр. 783
Похожие статьи
Межпредметные связи математики и информатики как фактор повышения качества обучения в школе
Учебный элемент по теме: «Построение диаграмм различных типов»
Метапредметные связи на уроках информатики
Компьютерное моделирование как инструмент реализации межпредметных связей
Использование электронных средств обучения при изучении курса «Алгебра»
Применение систем компьютерной алгебры для визуализации математических объектов и их преобразований на уроках математики
Современные подходы по формированию информационной компетентности учащихся на уроках математики
Применение систем компьютерной математики и компьютерных технологий при изучении дисциплин высшей математики как один из видов педагогических технологий
Эффективности использования метода моделирования в среде Excel на практических занятиях по информатике
Система автоматизированного проектирования MathCAD в процессе формирования приемов программирования и вычислительных экспериментов в средней школе

Молодой учёный