Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Пути повышения качества обучения математике студентов технических вузов

Педагогика
02.02.2015
180
Поделиться
Библиографическое описание
Гудкова, В. С. Пути повышения качества обучения математике студентов технических вузов / В. С. Гудкова, С. Н. Ячинова. — Текст : непосредственный // Молодой ученый. — 2015. — № 3 (83). — С. 755-758. — URL: https://moluch.ru/archive/83/15476/.

Известно, что одним из способов повышения качества обучения математике является применение в образовательном процессе методов, способствующих развитию и становлению познавательной активности и самостоятельности обучаемых. Одним из таких методов является метод наглядности.

В педагогической и методической литературе уделяется большое внимание принципу наглядности в обучении. Роль наглядности и её значение рассматривается в работах Я. А. Коменского, А. Н. Леонтьева, Г.Пестоллоци, К. Д. Ушинского, Л. М. Фридмана и др. В них особо отмечается важность применения наглядности в обучении математике, в связи с тем, что математика способствует развитию логического мышления, пространственного воображения.

В обучении математике широко применяется символическая наглядность, основу которой составляют чертежи, графики, схемы, таблицы. Наглядные пособия в процессе обучения математике используют для ознакомления с новым материалом, для формирования знаний, умений, навыков, для проверки уровня их усвоения.

При изучении дифференциальных уравнений в курсе математического анализа у студентов возникают большие трудности с их решением, особенно когда в задании не указано какое уравнение требуется решить. Студент должен сам определить вид уравнения и вспомнить метод его решения. Для овладения методами решения дифференциальных уравнений первого порядка составляется вспомогательная таблица (таблица 1), которая является опорным конспектом по данной теме.

Таблица 1

Дифференциальные уравнения первого порядка

Название уравнения

Вид уравнения

Метод интегрирования

1. С разделенными переменными

2. С разделяющимися переменными

3. Приводящиеся к уравнению с разделяющимися переменными

а) ;

а) подстановка

б) , если

б) подстановка

4. Линейные относительно

а) метод Лагранжа

б) метод Бернулли:

5. Уравнение Бернулли

Метод Бернулли:

6. Однородные

а) ;

б)

 

Подстановка

7. Приводящиеся к однородному

, если

8. В полных дифференциалах

,

9. Приводящиеся к уравнению в полных дифференциалах

, если

, но

а)

б)

а)

б)

(см.8)

 

Также большие трудности у студентов вызывает решение линейных неоднородных дифференциальных уравнений с постоянными коэффициентами. Для помощи студентам в освоении методики их решения составляется таблица соответствия вида частного решения виду правой части (таблица 2).

Таблица 2

Соответствие вида частного решение виду правой части ЛНДУ

Вид правой части

Вид частного решения

1.,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

2. ,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

3. , С,D — постоянные числа

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а),

А и В — постоянные неопределенные коэффициенты

б)  А и В — постоянные неопределенные коэффициенты

4. , - многочлен степени m,

 — многочлен степени n

а) - не корень характеристического уравнения

 

 

б) - корень характеристического уравнения кратности s.

а)

-многочлены степени r, r=max(m,n)

б)

-многочлены степени r, r=max(m,n)

 

Приведенные выше таблицы можно применять на различных этапах обучения решению дифференциальных уравнений, особенно они помогают студентам в самостоятельной работе.

Применение наглядности при обучении математике активизирует мыслительную деятельность, повышая уровень усвоения основных математических понятий и качество математической подготовки студентов, являющейся основой их профессиональной подготовки.

 

Литература:

 

1.                  Гудкова В. С., Ячинова С.Н, Новичкова Т. Ю. Наглядность как средство повышения качества обучения математике // Вестник магистратуры. — 2014. — № 12–4 (39). — С.41–43.

2.                  Крымская Ю. А., Титова Е. И., Ячинова С. Н. Построение математических моделей в прикладных задачах // Молодой ученый. — 2013. — № 12 (59). — С. 3–6.

3.                  Куимова Е. И., Куимова К. А., Ячинова С. Н. Формирование мотивационной составляющей обучения на примере изучения дифференциальных уравнений // Молодой ученый. — 2014. — № 2(61) — с.775–777.

4.                  Новичкова Т. Ю., Крымская Ю. А., Ячинова С. Н. Прикладная направленность преподавания математики как средство повышения качества обучения в военных вузах // Молодой ученый. — 2014. — № 18. — С. 619–621.

5.                  Ячинова С. Н., Гудкова В. С. Мотивация обучения студентов посредством моделирования // Молодой ученый. — 2014. — № 4 — с.1141–1144.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №3 (83) февраль-1 2015 г.
Скачать часть журнала с этой статьей(стр. 755-758):
Часть 7 (cтр. 715 - 811)
Расположение в файле:
стр. 715стр. 755-758стр. 811

Молодой учёный