Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Разработка программного комплекса для обработки НЧ сигналов

Технические науки
02.12.2014
240
Поделиться
Библиографическое описание
Табаков, Ю. Г. Разработка программного комплекса для обработки НЧ сигналов / Ю. Г. Табаков. — Текст : непосредственный // Молодой ученый. — 2014. — № 20 (79). — С. 228-231. — URL: https://moluch.ru/archive/79/14133/.

В статье приведены математические алгоритмы обработки низкочастотных сигналов на основе вейвлет-преобразований Добеши и Морле. Представлена технология снятия сигналов с коры головного мозга человека. Анализируется обработанный низкочастотный сигнал на формирование управляющего сигнала для интеллектуального тренажера.

Ключевые слова: низкочастотный сигнал, анализ сигнала, обработка сигнала, программирование, вейвлет-преобразование, вейвлет Добеши, вейвлет Морле.

 

На сегодняшний день существуют разнообразные программные обеспечения, которые позволяют осуществлять различные сложные преобразования звукового сигнала. Механизмы цифровой обработки сигнала выполняются как на программном, так и на аппаратном уровне. Но все эти программные средства не предназначены для работы с низкочастотными сигналами коры головного мозга человека.

При обработке низкочастотного сигнала необходимо учитывать его фазовую или частотную характеристики, расширение или сужение динамического диапазона, применение частотной, амплитудной или фазовой модуляции, а также устранение шумов/помех.

Цель работы — выбор оптимальных параметров вейвлет-преобразования Добеши и Морле, определение шага масштаба и временного интервала между отсчетами сдвига вейвлет-преобразования применительно к обработке низкочастотных сигналов для формирования управляющих сигналов.

Напряжение в точке соприкосновения электрода с поверхностью кожи головы определяет сумму напряжений, локализированные в радиусе этого электрода [1]. Подобные колебания напряжений называются суммой колебаний напряжений с разных локализированных участков кожного покрова, костной ткани или коры головного мозга (рис. 1).

Дополнительные наводки низкочастотных сигналов различной частоты и амплитуды имеют следующий вид (1) [2]:

,                                                                                           (1)

где  — суммарное изменение потенциальной энергии, приходящееся на единицу заряда;

 — изменение потенциальной энергии кожного покрова;

 — изменение потенциальной энергии костной ткани;

 — изменение потенциальной энергии коры головного мозга.

Рис. 1. Модель снятия сигнала с кожного покрова головы

 

Методы обработки низкочастотных сигналов коры головного мозга основаны на разнообразных закономерностях. Таким образом, функция вейвлет-преобразования  будет иметь следующим вид (2) [3]:

,                                                                             (2)

где  — функция вейвлета;

 — момент времени;

 — параметр обратный частоте;

 — ось времени.

Изменяющаяся базисная частота влияет непосредственно на основные характеристики вейвлет-преобразования. Однако, метод вейвлет-анализа свободен от различных погрешностей. Отсюда вытекает следующая интерпретация (3):

,                                                                                                                 (3)

где  — частотная переменная обратного приведенного масштаба.

Основной модуль вейвлет-преобразования представлен в виде определенного дифференциального уравнения (4):

.                                                                                  (4)

Разрабатываемый программный комплекс САЗСМЧ (спектральный анализ звуковых сигналов мозга человека) (рис. 2) оснащен несколькими программными алгоритмами на основе вейвлет-преобразования Добеши (5) [4] и Морле (6) [5, 6], которые разработаны специально для обработки низкочастотных сигналов частотой в диапазоне от 10 до 50 Гц. Структурная модель математического алгоритма вейвлет-преобразования представлена на рис. 3 [7].

Рис. 2. Загрузочный логотип программы САЗСМЧ

 

Рис. 3. Структурная модель математического алгоритма вейвлет-преобразования

 

,                                                                                     (5)

,                                                                                       (6)

где  — целочисленные трансляции;

 — определяет число коэффициентов функции вейвлета;

 — длина области вейвлета.

При обработке низкочастотного сигнала необходимо разложить его в вейвлет-ряд. Так при анализе полученных данных будет проще формировать управляющие сигналы. Для этого следует применить следующее равенство (7) [8]:

,                                              (7)

где  — масштабированная версия масштабной функции ;

 — смещенная версия «материнского» вейвлета ;

 — коэффициенты аппроксимации;

 — детализирующие коэффициенты.

Для первоначальной обработки низкочастотного сигнала будет применено частотно-временное уравнение (8):

,                                                                                                  (8)

где  — неизвестные параметры низкочастотного сигнала;

 — текущий момент времени;

 — начальный момент времени (9):

.                                                                                                                  (9)

С помощью разработанных алгоритмов вейвлет-преобразования Добеши и Морле была произведена обработка снятого низкочастотного сигнала с коры головного мозга человека [9]. Полученная синусоидальная кривая низкочастотного сигнала представлена на рис. 4.

Рис. 4. Синусоидальная кривая низкочастотного сигнала

 

Полученные данные были избыточны, т. е. на всем промежутке сигнала преобладали разнообразные шумы/помехи. В начале графика (рис. 4) до начала обработки сигнала (3 первых сегмента) присутствуют отчетливые шумы/помехи, которые в процессе всей обработки затрудняют получить конечные точные результаты. Для того чтобы избавить низкочастотный сигнал от присутствия шумов/помех следует применить аппаратный или программный фильтр и произвести повторную обработку снятого сигнала.

Для дальнейшего проведения исследования будет использован разработанный алгоритм программного линейного фильтра с дискретным временем [10], результаты которого показаны на рис. 5.

Рис. 5. Пример формирования управляющего сигнала для переключения схемы управления тренажером

 

Отфильтрованный низкочастотный сигнал позволил сформировать управляющий сигнал, показанный в нижней части рис. 5. Полученный управляющий сигнал будет служить для определенно-заданных команд управления интеллектуальным тренажером.

По результатам полученных данных был реализован метод обработки управляющих сигналов коры головного мозга с датчиков электроэнцефалограммы, основанный на снижении или уменьшении бета-сигналов с параметрами амплитуды менее 5–15 мкВ для частот 10–50 Гц в области центральных лобных извилин, задних центральных и лобных извилины. Это связано с тем, что бета-ритм связан с соматическими сенсорными и двигательными корковыми механизмами, что позволяет достичь реакцию угасания на двигательную активацию или тактильную стимуляцию. Для мю-ритмов амплитуда нарастает до 50 мкВ при двигательной активации или соматосенсорной стимуляции для частот 8–13 Гц.

 

Литература:

 

1.                  Бибиков Д. В., Буров Р. Б., Лавлинский В. В., Табаков Ю. Г. Метод проектирования схем для считывания НЧ-сигналов с коры головного мозга // Моделирование систем и процессов. –2013. –№ 2. –С. 11–14.

2.                  Бибиков Д. В., Буров Р. Б., Лавлинский В. В., Табаков Ю. Г. Исследование подходов для создания информационной составляющей при проектировании интеллектуального тренажера на основе сигналов коры головного мозга // Моделирование систем и процессов. –2012. –№ 4. –С. 52–56.

3.                  Табаков Ю. Г., Лавлинский В. В. Бибиков Д. В. Метод и алгоритм обработки НЧ сигналов с помощью вейвлета Добеши // Моделирование систем и процессов. –2014. –№ 3. –С. 42–44.

4.                  Бибиков Д. В., Буров Р. Б., Лавлинский В. В., Табаков Ю. Г. Вейвлет-преобразование Добеши для низкочастотных сигналов, снятых с коры головного мозга человека // Моделирование систем и процессов. –2013. –№ 2. –С. 8–11.

5.                  Табаков Ю. Г., Бибиков Д. В. Анализ вейвлет-преобразования Морле для снятия и обработки НЧ сигналов // Системы управления и информационные технологии. –2014. –№ 3.2(57). –С. 272–275.

6.                  Бибиков Д. В., Лавлинский В. В., Табаков Ю. Г. Модифицированный алгоритм вейвлет-преобразования Морле для анализа НЧ сигналов // Моделирование систем и процессов. –2013. –№ 3. –С. 12–14.

7.                  Табаков Ю. Г., Лавлинский В. В. Бибиков Д. В. Оптимизация алгоритмов вейвлет-преобразования при моделировании НЧ сигналов // Моделирование систем и процессов. –2014. –№ 3. –С. 47–49.

8.                  Лавлинский В. В., Табаков Ю. Г. Анализ вейвлет-преобразований Добеши и Морле на малейшие изменения в НЧ сигнале // Научный вестник Воронежского государственного архитектурно-строительного университета. Серия: Информационные технологии в строительных, социальных и экономических системах. –2014. –№ 2. –С. 56–59.

9.                  Табаков Ю. Г., Лавлинский В. В. Рационализация выбора математических алгоритмов для управляющих НЧ сигналов // Моделирование систем и процессов. –2014. –№ 3. –С. 39–41.

10.              Табаков Ю. Г., Лавлинский В. В. Бибиков Д. В. Обработка НЧ сигналов для интеллектуальных тренажеров с применением программных линейных фильтров с дискретным временем // Моделирование систем и процессов. –2014. –№ 3. –С. 45–47.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
низкочастотный сигнал
анализ сигнала
обработка сигнала
программирование
вейвлет-преобразование
вейвлет Добеши
вейвлет Морле
Молодой учёный №20 (79) декабрь-1 2014 г.
Скачать часть журнала с этой статьей(стр. 228-231):
Часть 2 (cтр. 123 - 235)
Расположение в файле:
стр. 123стр. 228-231стр. 235

Молодой учёный