Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Автоматизированный расчет и построение схем электроснабжения в AutoCad с применением языка программирования AutoLisp

Технические науки
24.04.2014
6310
Поделиться
Аннотация
В разработку и интеграцию САПР в области энергетики и проектирования систем электроснабжения вносят вклад такие компании, как CSoft Development, Сad Group, Autodesk, «Русская промышленная компания», «Аскон» и т.д. Продукция этих компаний, несомненно, ориентирована на конечного потребителя и создается специалистами с многолетним опытом создания программ автоматизированного проектирования, однако преимущественно является коммерческой, и сравнительно дорогой, к сожалению, среди них нет ни одной системы автоматизированного проектирования производства Казахстана. Разрабатываемый отечественный САПР позволит сократить время работы проектировщиков, сможет интегрировать в себя базы электрооборудования производителей Казахстана, производить расчеты и создавать проекты в соответствии с нормативными требованиями Республики Казахстан. Методика может найти широкое практическое применение среди проектировщиков, благодаря легкости применения.
Библиографическое описание
Сыздыков, А. К. Автоматизированный расчет и построение схем электроснабжения в AutoCad с применением языка программирования AutoLisp / А. К. Сыздыков. — Текст : непосредственный // Молодой ученый. — 2014. — № 6 (65). — С. 259-264. — URL: https://moluch.ru/archive/65/10489.

В разработку и интеграцию САПР в области энергетики и проектирования систем электроснабжения вносят вклад такие компании, как CSoft Development, Сad Group, Autodesk, «Русская промышленная компания», «Аскон» и т. д. Продукция этих компаний, несомненно, ориентирована на конечного потребителя и создается специалистами с многолетним опытом создания программ автоматизированного проектирования, однако преимущественно является коммерческой, и сравнительно дорогой, к сожалению, среди них нет ни одной системы автоматизированного проектирования производства Казахстана. Разрабатываемый отечественный САПР позволит сократить время работы проектировщиков, сможет интегрировать в себя базы электрооборудования производителей Казахстана, производить расчеты и создавать проекты в соответствии с нормативными требованиями Республики Казахстан. Методика может найти широкое практическое применение среди проектировщиков, благодаря легкости применения.

Ключевые слова: AutoLisp, электроснабжение, САПР, проектирование, освещение, розеточная сеть.

В данной статье предложена методика автоматического построения схем электроснабжения низкого напряжения с использованием языка программирования AutoLISP, являющегося стандартным для AutoCAD.

В программе использованы элементы, созданные только стандартными средствами AutoCAD. Для этого создаем дополнительные панели управления в AutoCad, путем вызова команды: Сервис-Адаптация-Интерфейс (в различных версиях по разному.) В графе панели нажимаем новая панель инструментов, назовем ее «Расчет схемы». Для этой панели создадим несколько команд. К примеру распишем создание одной команды, для этого нажимаем создать новую программу (см. рис 1), задаем ей имя «Подключение оборудования к щиту». Также можно задать значок, и в графе Макросы пишем ^C^CmyConnectQF.

Рис. 1. Создание новых панелей инструментов в AutoCad

Это макрос созданный в Auto Lisp с заданным алгоритмом подключения одного динамического блока в AutoCad к другому, атрибут «принадлежность» (см. рис. 2)

Рис. 2. Пример кода команды «Подключение оборудования к щиту» в AutoLisp

Теперь в списке «настраиваемые команды» появится наша команда «Подключение оборудования к щиту» (см. рис 1). Перенесем ее в панель «Расчет схемы». Должна появиться новая панель «Расчет схемы» с командой «MyConnect QF» как показано на Рисунке 3.

Аналогичным образом добавляем команды «Сбор нагрузки с планов»,

«Расчет схемы», «Фазировка», «Сумма длин проводов и труб», «Сумма модулей в щите», «Подключение щитов к питающим автоматам» и т.д, прописывая макрос каждой команды задавая алгоритм работы в AutoLisp.

Рис. 3. Новая созданная панель «Расчет схемы»

Команда «Сбор нагрузки с планов» позволит собрать мощность и длину ваших групп с планов, с записью в автоматический или дифференциальный выключатель. Команда «Фазировка» выполняет фазировку однополюсных автоматов по фазам L1, L2, L3 в щите, с последующей записью результата в таблицу. Резервный автомат располагается на самой незагруженной фазе.

Команда «Сумма модулей» команда суммирует количество модулей в щите с выводом результатов в командную строку. Ширина одного модуля

=18 мм. По умолчанию в блоках в атрибуте «06_КОЛ_МОДУЛЕЙ»

Команда «Подключение щитов к питающим автоматам»: После того как щит укомплектован и рассчитаны значения (Ру — установленная мощность, Кс-коэффициент спроса, Рр — расчетная мощность) необходимо вписать эти данные в автомат который питает данный щит. Для этого после запуска команды выбираем таблицу щита (блок) с подтверждением (Enter), а потом выбираем блок автоматического выключателя и еще раз (Enter). Все значения щита занесены в автомат, при этом автоматически выбирается селективный ток автомата.

В функционал программы будут вложены шаблоны схем расчета с готовыми блоками, а так же панели «Вспомогательные модули» и «Расчет спецификации» (см. рис. 4).

Для удобства работы проектировщиков электроснабжения созданы инструментальные палитры (см. рис. 5), (вызов сочетанием клавиш Ctrl+3) с заданными блоками электрических аппаратов, которые соответствуют ГОСТ 21.614–88 «Изображения условные графические электрооборудования и проводок на планах» [4], а также МЭК IEC 60027 [5].

Рассмотрим подробней работу функции «Расчет схемы». На Рис.3 эта функция показана справа от кнопки «Подключение оборудования к щиту». При запуске вы увидите сообщение «Выберите автоматический (е) выключатель(и) или УЗО».

Рис. 4. Созданные панели «Расчет схемы», «Вспомогательные модули», «Расчет спецификации» в шаблоне документа с готовыми блоками элементов расчетной схемы

Программа после ввода Ру (установленная мощность), Кс (коэффициент спроса), сos f (коэффициент мощности), длины рассчитывает Рр (расчетную мощность), Ip (расчетный ток) и выбирает сечение, трубу (если указана), момент, потери, ток расцепителя, а также всю нагрузку по щиту.

В программе используются 3 типа данных:

-                   обязательные для ввода (выделены красным цветом);

-                   не обязательные (выделены синим цветом);

-                   расчетные — данные рассчитанные программой (выделены черным цветом).

Данные вводятся в атрибуты блока «QF» автоматический выключатель. Блок условно может принимать 3 вида видимости определяемые вами:

«Автомат 0.22(0.66)» или «УЗО 0.22(0.66)» стандартный режим применяется в большинстве случаев; «Автомат 0.22(0.66) до 2 потребителей»- применяется, когда нужно шлейфом или отпайкой запитать до 2 потребителей, один или два из которых могут быть резервными (пример: два двигателя 1 раб 1 рез);

«Автомат 0.22(0.66) до 3 потребителей» — применяется, когда нужно шлейфом или отпайкой запитать до 3 потребителей, один или два или три из которых могут быть резервными; (пример: три двигателя 1 раб 1 раб 1 рез);

Для расчета магистрали:

-     жилого дома питающая 1-фазный ввод в квартиры, достаточно заполнить значение атрибута 36_N (Количество квартир), далее программа рассчитает сама в соответствии с СП 31–110–2003 см. 6 раздел (расчет производится с учетом приведенной длины), для наглядности введем в атрибут 34_TEXT «Pp= х»;

Рис. 5. Палитры инструментов с готовыми блоками, соотевтсвующими МЭК IEC 60027 и ГОСТ 21.614–88

Таблица 1

Вводимые данные в автомат (динамический блок QF)

Наименование данных

Пример заполнения

Позиция атрибута в блоке_имя

Формируется автоматически для спецификации

BA61F 29–1B 32 А

00_ТИП_ОБЪЕКТА

Должно соответствовать типу ящика (1)

«ЩО4»

01_ПРИНАДЛЕЖНОСТЬ

Ру-установденная мощность, кВт

1

03_МОЩНОСТЬ_УСТАНОВЛЕННАЯ

Кс-коэффициент спроса (по умолчанию=1)

1

04_КОЭФФИЦИЕНТ_СПРОСА

Рр-расчетная мощность, кВт

1

05_МОЩНОСТЬ_РАСЧЕТНАЯ

Cos f

0,92

06_COSF (коэффициент мощности)

Ip-расчетный ток нагрузки, А

4,9

07_ТОК_РАСЧЕТНЫЙ

Тип проводника труба (2)

ПуВ 3(1х2,5)-П20

L-длина, м

50

14_ДЛИННА_КАБЕЛЯ

Момент, кВт*м потери, % (3)

42,5–0,6

18_МОМЕНТ_ПОТЕРИ

Для фазировки в щите (L1, L2, L3)

«L1»

20_ФАЗА

Рабочий или резервный (4)

(рез)

21_РАБ_РЕЗ

Номер питающей линии

4–1

22_№ ПО_ПЛАНУ

Наименование помещения или нагрузки (4)

осв. холла пож.насос (рез)

26_ИМЯ_ЭЛ_ПРИЕМНИКА

В основном для типа двигателей

ТР 102 или ««.

27_ТИП_НАГРУЗКИ

Коэф. одновременности 3 фазном вводе в квартиру

0,19

29_КОЭФФИЦИЕНТ_ОДНОВРЕМЕННОСТИ

Селективный ток расцепителя (5)

25 А

32_СЕЛЕКТИВН_ТОК_РАСЦЕПИТЕЛЯ

Селективное сечение (6)

4

33_СЕЛЕКТИВНОЕ_СЕЧЕНИЕ

Пояснение к расчетам

Pp= х

34_TEXT

Площадь БКТ или Рр.кв

14

35_PPK_S

Количество квартир

40

36_N

-     жилого дома питающая 3-фазный ввод в квартиры, достаточно заполнить значения атрибутов 35_PPK_S (В данном случае мощность квартиры), 36_N, далее программа рассчитает сама в соответствии с СП 31–110–2003 [6, раздел 6] (расчет производится с учетом приведенной длины), для наглядности введем в атрибут 34_TEXT «Pp= х х»;

-     помещений без конкретной технологии, достаточно заполнить значение атрибута 35_PPK_S введя значения площади, для наглядности введем в атрибут 34_TEXT «Sоб= м2». Примечание к таблице 1:

1) Вы должны вписать имя вашего щита самостоятельно (на пример ЩО4), или воспользоваться командой «Подключение автоматов к щиту»

2) Примеры вариантов записи проводника в соответствии с ГОСТ 21.608–84: ВВГнг-FRLS 3х1,5;АВВГ 3(1х6); ВВГнг-LS 4(1х70)+1х35;

ПуВ 3(1х2,5)-П20Труба может иметь один из 3 видов:

«П»-ПВХ; «Т»-стальная; «Г»-водогазопроводная.

3) Пример записи момент-потери: 1000–1,3.

Момент считается для алюминиевых или медных проводников, потери в групповых или распределительных линиях, при расчете составляет < 1,5 %, суммарные потери по объекту, как показывает статистика не превышает 2,7 %.

4) Резервную группу программа поймет, если в поле (атрибут «21_РАБ_РЕЗ» или «26_ИМЯ_ЭЛ_ПРИЕМНИКА») написать любое словосочетание с «рез».

Пример: а) «насос повышения давления (рез)»; б) «пожарный насос-резервный».

Освещение и розеточная сеть рассчитывается с учетом распределенной длины, т.е длина всей трассы умножается на 0,5 для этого в поле атрибута «26_ИМЯ_ЭЛ_ПРИЕМНИКА» или (и) «27_ТИП_НАГРУЗКИ» пишите любое словосочетание с «осв» или «роз» (пример: освещение холла, ав. осв. коридоров, розетки комнат..)

При расчете схемы номинал автомата для освещения начинается с «10 А», для всего остального с «16 А».

5) Селективный ток, атрибут «32_СЕЛЕКТИВН_ТОК_РАСЦЕПИТЕЛЯ» дает возможность задать установку питающего автомата, т.е при расчете нагрузки будет выбрана ваша установка автомата и если ток нагрузки будет больше заданного, то программа автоматически подберет нужную установку. Это актуально когда вы будете собирать нагрузки на ВРУ, для соблюдения селективности, или когда питаете двигатель с ящиком управления в котором уже установлен QF, а значение нашего автомата должно быть на ступень выше. Не пример Ррдвиг.=5,5 кВт, Cosf=0,85 Iр=9,8 А. Пределы регулирования ящика 9,5–14 А, защита 16 А. Значения автомата 20 А. Вот эти 20 А вписываем в 32 атрибут.

6) Селективное сечение дает возможность жестко задать сечение питающего кабеля, т. е. при расчете нагрузки будет выбрано ваше сечение и если потери составят более 1,5 % по вашему сечению, то программа автоматически подберет нужное исходя из типа проводника.

Это актуально когда вы будете собирать нагрузки на ВРУ. Сечение питающего проводника должно быть не менее сечения проводника в питаемом этой группой щите.

По окончанию расчетов, результат расчетов можно записать в таблицу.

В данной статье указаны только некоторые функции программы. Программа может быть использована при проектировании силового электрооборудования жилых и общественных зданий. С ее помощью можно рассчитать длины кабелей по группам в соответствии с планами, расчет автоматов по нагрузке и типу кабеля, произвести расчет схемы ВРУ или ГРЩ, так же количество модулей в щите и сумму кабелей по щиту, создана также отдельная панель формирования спецификации. Несомненно, она может ускорить и улучшить качество работы проектировщиков по электроснабжению.

Литература:

1.      Полещук Н. Н., Лоскутов П. В. «AutoLispи VisualLISPв среде AutoCAD». — СПб.: Пет ербург. 2006

  1. Правила устройств электроустановок Республики Казахстан. 2008

3.      ГОСТ 21.613–88 «Силовое электрооборудование»;

4.      ГОСТ 21.614–88 «Изображения условные графические электрооборудования и проводок на планах»;

5.      МЭК IEC 60027

6.      СП 31–110–2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №6 (65) май-1 2014 г.
Скачать часть журнала с этой статьей(стр. 259-264):
Часть 2 (cтр. 125 - 277)
Расположение в файле:
стр. 125стр. 259-264стр. 277
Похожие статьи
Автоматизация разработки чертежей AutoCad на основе использования скриптов
Оптимизация выпуска задания заводу-изготовителю на низковольные комплектные устройства
Расчёт режима сети 0,4 кВ с учётом несимметрии мощностей потребителей частного сектора
Разработка подсистемы формирования и графического построения скелетной схемы форсажной камеры ВРД
Использование САПР для решения геодезических задач при строительстве высоковольтных линий электропередач
Обзор существующих усовершенствованных расчетов трансформаторной мощности при проектировании жилых микрорайонов
Применение средств библиотеки QT5 для программирования моделей электрических цепей
Алгоритм для расчета потерь мощности в электрических сетях с учетом несинусоидальности напряжения
Выбор сечений жил кабельных линий при различных видах прокладки
Решение задачи повышения уровня пожарной безопасности помещений на основе активного интеллектуального управления индивидуальной сетевой нагрузкой

Молодой учёный