Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Косая строфоида

Технические науки
06.02.2014
465
Поделиться
Аннотация
Статья посвящена изучению косой строфоиды, которая представляет собой частный случай строфоиды. В работе рассматривается стереометрический способ образования косой строфоиды и приводится планиметрический способ её построения. Также в статье представлено уравнение косой строфоиды.
Библиографическое описание
Омонов, К. К. Косая строфоида / К. К. Омонов. — Текст : непосредственный // Молодой ученый. — 2014. — № 2 (61). — С. 170-172. — URL: https://moluch.ru/archive/61/9280/.

Рассматриваемая нами строфоида представляет собой частный, так называемый косой строфоид, на стереометрическом способе образования которой мы и хотим и остановится.

Рис. 1.

Представим себе конус с вершиной в точке V, образующими g1 иg2 икасательной к нему, проходящей через точку А перпендикулярно к g1 (рис. 1). Проведем секущую плоскость через эту касательную, и пусть точки М и М1будут фокусами полученного сечения. Представим теперь, что секущая плоскость поворачивается вокруг касательной, тогда точки М и М1опишут кривую, называемую косой строфоидой, которая будет лежать в плоскости, перпендикулярной к нашей касательной. Для определения положения образующих точек М и М1на прямой АР, являющейся линей пересечения секущей плоскости с плоскостью чертежа, достаточно, как известно, вписать в конус два шара, касающихся секущей плоскости; точки касания и будут фокусами конического сечения, т. е. точками М и М1. Построение кривой может быть однако упрощено и целиком переведено на плоскость чертежа на основании нижеследующих соображений. Обозначив середину отрезка АР через В замечаем, что точки, аналогичные В, будут лежать на прямой l, параллельной образующей g2. Очевидно, эта прямая пройдет также через точки N и С, являющиеся серединами отрезков AV иAK, причем точка К выбрана так, что AV=AK. Если обозначить теперь VA=a, VP=b иAP=c, то будем иметь и так как то по и следовательно, .

Рис. 2.

Получение соотношение определяет планиметрический способ построения косой строфоиды: пусть дан угол с вершиной в точке С; берем на одной из его сторон точку А и проводим через нее произвольный луч, который пересечет другую сторону в точке В; тогда точки М и М1этого луча, построенные так, что принадлежать строфоиде.

Рассмотренная нами прежде строфоида, в отличие от косой строфоиды, называется прямой. Она может быть получена, если вместо конуса взять цилиндр; именно, надо взять две параллели g1 иg2 на первой из них — точку А; провести затем прямую АР и на ней найти точки касания двух кругов, касающихся параллелей g1 иg2. Найденный точки будут принадлежать строфоиде (рис. 2). Построение можно упросить: пусть В — середина АР, геометрическое место точек В будет, очевидно, осью р цилиндра; если провести теперь через точку А прямую АК, перпендикулярную к g2, то треугольники ВМО1, ВМ1О2 и ВСА окажутся равными между собой следовательно, .

Способ построения прямой строфоиды на основание полученного равенств очевиден. Справедливость этого равенства убеждает нас также в том, что полученная кривая действительно является строфоидой, так как оно соответствует исходному определению этой кривой.

Убедится в том, что косая строфоида является обобщением прямой, модно также, составив уравнение косой строфоиды. Обозначим с этой целью угол ACN через α, точку A будем считать полюсом, а прямую АК — полярной осью; тогда из треугольники ABC (рис.1) получим;

, откуда, , а так как радиусы-векторы точек М и М1 принадлежащих строфоиде, определяются равенством , то полярное уравнение косой строфоиды запишется в виде

.

Полагая здесь , получим уравнение прямой строфоиды.

Литература:

1.         А. В. Бубенников. «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ» Москва «Высшая школа» 1981 г.

2.         А. А. Савелов «ПЛОСКИЕ КРИВЫЕ» систематика, свойство, применения. «Москва» 1960 г.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
строфоида
косая строфоида
стереометрический способ
планиметрический способ
полярное уравнение
Молодой учёный №2 (61) февраль 2014 г.
Скачать часть журнала с этой статьей(стр. 170-172):
Часть 1 (cтр. 1 - 239)
Расположение в файле:
стр. 1стр. 170-172стр. 239

Молодой учёный