Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Нормы оценки знаний обучающихся по математике

Педагогика
12.12.2013
6867
Поделиться
Библиографическое описание
Жидкова, А. Е. Нормы оценки знаний обучающихся по математике / А. Е. Жидкова, Е. И. Титова. — Текст : непосредственный // Молодой ученый. — 2014. — № 1 (60). — С. 522-523. — URL: https://moluch.ru/archive/60/8640/.

В данной статье говориться об оценке математических знаний по пятибалльной системе. Выделяются основные требования к письменным и устным ответам для получения определенной отметки. Приведена классификация ошибок.

Ключевые слова:оценка знаний по математике, математические ошибки.

Математика одна из основных фундаментальных наук, которая лежит в основе многих дальнейших дисциплин, осваиваемых обучающими. Поэтому полученные знания, умения и навыки в школьном курсе математики очень важны для дальнейшего обучения. Правильная оценка учителем базы знаний по каждой теме дает полноценную картину всей системы знаний по дисциплине. В математике главную роль, конечно, играют письменные работы, решение примеров и задач, но также содержится и определенный процент устных ответов, таких как знание теорем, основных определений и т. д. Нам хотелось бы выделить основные требования к качеству знаний для получения определенной оценки по пятибалльной системе.

Оценка письменных контрольных работ:

Отметка «5» ставиться, если:

-          работа полностью вся выполнена;

-          в решении все рассужено логически и без ошибок, не допущено никаких пробелов;

-          в решении нет вычислительных ошибок (возможна описка, которая не является следствием незнания или непонимания учебного материала).

Отметку «4» ставят в следующих случаях:

-          работа полностью выполнена, но обоснования шагов решения недостаточны (если умение логически рассуждать не являлось специальной целью проверки);

-          допущено пару ошибок или имеется два-три недочёта в рисунках, чертежах или графиках (если эти виды работ не являлись специальным целью проверки).

Отметку «3» можно поставить, если:

-          допущено более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметку «2» ставят, если:

-          за грубые существенные ошибки, говорящие о том, что обучающийся не обладает определенными знаниями и умениями по данной теме в нужном объеме.

Отметку «1» ставят, если:

-          выполненное задание отображает полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме, а также если он не способен выполнять задания самостоятельно.

Оценка устных ответов по математике

Отметкой «5» оцениваем устный ответ, если:

-          полно раскрыто содержание материала в объеме, предусмотренном программой и учебником;

-          материал изложен логично и изъяснен грамотным языком, верно используется математическая терминология и символика;

-          правильно нарисованы рисунки, чертежи, графики, сопутствующие ответу;

-          приведены конкретные примеры, на излагаемую тему, видны умения применять ее в новой ситуации при выполнении практического задания;

-          продемонстрировано знание теории ранее изученных сопутствующих тем, своевременно используемых при ответе;

-          не требовалось наводящих вопросов учителя;

-          возможны одна-две неточности при освещение второстепенных вопросов, которые ученик легко исправил после замечания учителя.

Отметкой «4» оцениваем ответ, если он в принципе удовлетворяет требованиям на оценку «5», но при этом имеет один из недочетов:

-          математическое содержание сохранено, но имеются небольшие неточности;

-          допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

-          допущена ошибка или недочет при изложении не основного материала, но легко исправленные после замечания учителя.

Отметкой «3» оцениваем ответ в следующих случаях:

-          содержание материала изложено фрагментарно, не всегда последовательно, но общее понимание вопроса не вызывает сомнения, продемонстрированы умения, достаточные для усвоения программного материала;

-          были замечены затруднения или допущены ошибки в определении математической терминологии, чертежах, исправленные после нескольких наводящих вопросов учителя;

-          учащийся не может применить изучаемый теоретический материал в новой ситуации, способен лишь на тривиальное применение практического задания;

-          имеется достаточная база знаний, но не в полной мере сформированы умения и навыки.

Отметкой «2» оцениваем в следующих случаях:

-          не раскрыто основное содержание учебного материала;

-          ученик не знает основной материал по данной теме;

-          допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметкой «1» оцениваем ответ, если:

-          показано полное незнание и непонимание изучаемого учебного материала, не получено ни одного ответа на задаваемые вопросы по изученному материалу.

У педагога всегда есть возможность изменить отметку, а именно, он может повысить ее за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

Говоря про постановку оценки за знания, мы подразумеваем, что чем выше оценка, тем меньше ошибок. Поэтому хотелось бы добавить про классификацию ошибок, а именно выделить, что относится к грубым, негрубым ошибкам, а что можно считать недочетом.

Грубыми считаются ошибки:

-          незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

-          незнание наименований единиц измерения;

-          неумение выделить в ответе главное;

-          неумение применять знания, алгоритмы для решения задач;

-          неумение делать выводы и обобщения;

-          неумение читать и строить графики;

-          неумение пользоваться первоисточниками, учебником и справочниками;

-          потеря корня или сохранение постороннего корня;

-          отбрасывание без объяснений одного из них;

-          равнозначные им ошибки;

-          вычислительные ошибки, если они не являются опиской;

-          логические ошибки.

К негрубым ошибкам следует отнести:

-          неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного — двух из этих признаков второстепенными;

-          неточность графика;

-          нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

-          нерациональные методы работы со справочной и другой литературой;

-          неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

-          нерациональные приемы вычислений и преобразований;

-          небрежное выполнение записей, чертежей, схем, графиков.

Выделенные требования, за какие умения можно ставить определенную оценку и четкое представление, что считается грубой ошибкой, а что недочетом, позволят учителю грамотно оценить ученика.

Литература:

1.     Гребенев И. В., Ермолаева Е. И., Круглова С. С. Математическая подготовка абитуриентов — основа получения профессионального образования в университете// Наука и школа, № 6, 2012г. С 27–31.

2.     Стандарт основного общего образования по математике.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
оценка знаний по математике
математические ошибки.
Молодой учёный №1 (60) январь 2014 г.
Скачать часть журнала с этой статьей(стр. 522-523):
Часть 4 (cтр. 457 - 597)
Расположение в файле:
стр. 457стр. 522-523стр. 597

Молодой учёный