Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Использование адсорбционных свойств глауконита бондарского месторождения Тамбовской области в процессах водоподготовки

Химия
03.12.2013
1175
Поделиться
Аннотация
Изучена сорбционная способность глауконита Бондарского месторождения Тамбовской области по отношению к катионам Ca2+, Mg2+, Fe2+ и Fe3+ и анионам Cl-, SO42-, которая позволяет рекомендовать глауконит как безопасный сорбент для доочистки питьевой воды. Для катионов Fe2+ изучена кинетика адсорбции в стационарном режиме. Показано, что сорбция их глауконитом составляет 70–74 % за 30–40 мин.
Библиографическое описание
Барышникова, Е. А. Использование адсорбционных свойств глауконита бондарского месторождения Тамбовской области в процессах водоподготовки / Е. А. Барышникова, Е. О. Забенькина. — Текст : непосредственный // Молодой ученый. — 2013. — № 12 (59). — С. 52-54. — URL: https://moluch.ru/archive/59/8582.

Изучена сорбционная способность глауконита Бондарского месторождения Тамбовской области по отношению к катионам Ca2+, Mg2+, Fe2+ и Fe3+ и анионам Cl-, SO42-, которая позволяет рекомендовать глауконит как безопасный сорбент для доочистки питьевой воды. Для катионов Fe2+ изучена кинетика адсорбции в стационарном режиме. Показано, что сорбция их глауконитом составляет 70–74 % за 30–40 мин.

Ключевые слова: Глауконит, сорбционная способность, ионы, кальций, магний, железо (II и III), хлорид- и сульфат-анионы, водоподготовка.

В настоящее время остро стоит вопрос о качестве водопроводной воды во всех регионах РФ. Необходимо изменение и модернизация процессов в схемах водоподготовки. В связи с этим нами изучена перспектива использования неорганического материала — глауконита — для целей водоочистки. Глауконит — природный алюмосиликат с общей формулой (К, H2O)(Fe3+, Al, Fe2+, Mg) 2 [Si3AlO10](OH)2×nH2O, широко встречающийся на региональных месторождениях, обладающий высокой сорбционной активностью, большой емкостью, селективностью, термической и радиационной устойчивостью, наряду с низкой стоимостью. Следует отметить, что ранее в работах [1–6] подробно изучена адсорбционная способность глауконитов по отношению к фенолу, анилину, тяжелым металлам, пестицидам, ПАВ, радионуклидам, хлорорганическим соединениям. Показано, что этот минерал эффективно использовать для очистки сточных вод и в процессах дезактивации воды. Однако, свойства глауконитов, близких по строению, химическому составу, одного геологического возраста на разных месторождениях неодинаковы, поэтому не всегда пригодны для очистки воды [7]. Следует отметить, что работ по применению глауконитов в процессах очистки, точнее доочистки, водопроводной воды, не проводилось. Поэтому, нами были исследованы образцы глауконита Бондарского месторождения Тамбовской области для локальной очистки питьевой водопроводной воды. Проведенные нами исследования структурно-морфологических особенностей, физико-химических, ионнообменных характеристик глауконита данного месторождения показывают возможность применения его в схемах водоподготовки. Основные физико-химические показатели глауконита Бондарского месторождения приведены в табл.1.

Таблица 1

Основные физико-химические показатели глауконита

Удельная поверхность по БЭТ, м2

Объем пор, см3

Истинная плотность, г/см3

Пористость, %

Диаметр пор, Å

Микро

Мезо

Суммарный

20,56

0,0027

0,026

0,033

2,6712

8,1

65,11

В работе приведены результаты исследования сорбции глауконитом катионов Ca2+, Mg2+, Fe2+ и Fe3+ и анионов Cl-, SO42-. Установлено влияние сорбента на жесткость воды. Также, изучена кинетика адсорбции ионов Fe2+ на глауконите в стационарном режиме.

Для проведения исследований, водопроводную воду из центрального водоснабжения под давлением пропускали через ионообменник, заполненный глауконитом. Предварительно в водопроводной воде было определено содержание исследуемых ионов. Концентрацию общего железа оценивали фотометрическим методом с сульфосалициловой кислотой, катионов кальция и магния — прямым комплексометрическим титрованием трилоном Б с индикатором эриохромом черным Т, сульфат-анионов — турбидиметрическим методом, хлорид-ионов — титрованием азотнокислым серебром в присутствии хромовокислого калия в качестве индикатора. Все реактивы использовали квалификации ч. д.а. После ионообменника воду фильтровали и анализировали на содержание в ней катионов Ca2+, Mg2+, Fe2+ и Fe3+ианионов Cl-, SO42-.

Результаты снижения концентрации исследуемых катионов и анионов в процессе сорбции представлены в таблице 2.

Таблица 2

Результаты сорбции ионов глауконитом по данным химического анализа

Исследуемые ионы

Массовая доля поглощенного адсорбата, %

Fe2+ и Fe3+

33

Ca2+

82,7

Mg2+

77,6

Cl-

73,5

SO42-

71,43

Согласно полученным данным, глауконит Бондарского месторождения эффективно сорбирует ионы Ca2+, Mg2+,Cl-, SO42-, в меньшей степени катионы железа. А также, снижение жесткости, за счет сорбционной способности минерала, составило 79 %. Однако, как показал анализ имеющихся литературных данных, полученные результаты не следует распространять на другие ионы. Так, по Zn2+ сорбционная способность минерала практически равна нулю [1]. Вероятно, хорошее водоумягчающее действие Бондарского глауконита основывается на его способности поглощать из воды ионы кальция и магния, выделяя взамен, содержащиеся в нем ионы натрия. По мнению [6] этот процесс обратим: поглощенные ионы Ca2+и Mg2+легко переходят в раствор хлористого натрия, а их место занимает обменный натрий. Невысокую сорбируемость ионов двух- и трехвалентного железа (см. табл.2), можно объяснить наличием на боковых гранях этого слоистого силиката координационно ненасыщенных ионов Fe3+ и вероятно, возможностью катионов железа покидать кристаллическую структуру ионита. Поскольку изучение кинетики адсорбции только ионов Fe2+ показало, что поглощение этих катионов Бондарским глауконитом составляет 70–74 % и достигается за 30–40 минут. Исследование адсорбции ионов Fe2+ проводилось методом измерения кинетических кривых в стационарных условиях. Для этого навеску адсорбента массой 2 г выдерживали в дистиллированной воде (250 мл) 24 часа. После декантирования адсорбент во влажном состоянии заливали свежеприготовленным раствором FeSO4·7H2O с содержанием катионов Fe2+ 21±1 мг/л (в соотношении 2г сорбента и 100 мл раствора). Сорбцию катионов проводили в течение 40 минут (t) при непрерывном перемешивании магнитной мешалкой. Через определенные временные интервалы отбирались пробы и проводился их анализ рентгенофлюоресцентным способом по методу калибровочной кривой. На основании полученных данных проводился расчет равновесной концентрации ионов Fe2+р) и их адсорбции (Г).

В таблице 3 и на рис.1 представлены результаты сорбции ионов Fe2+ глауконитом Бондарского месторождения.

Таблица 3

Результаты адсорбции глауконитом ионов Fe2+ во времени

t, мин

Cр, мг/л

Г·109, мг/см2

0

0

0

5

14,175

3,32

15

12,6

4,08

30

5,67

7,46

40

5,46

7,56

60

5,56

7,51

Название: С (Fe2+)­p

Рис. 1. Зависимость адсорбции ионов Fe2+ Бондарским глауконитом от времени. Использованы средние арифметические значения из трех измерений

Полученные экспериментальные данные свидетельствуют о том, что сорбционное равновесие достигается за 30–40 мин. Концентрация сорбированных катионов Fe2+ глауконитом в условиях равновесия составляет 15,54 мг/л или порядка 74 масс. % исходной величины.

Анализируя экспериментальные данные, можно сделать следующие выводы:

1)     глауконит Бондарского района Тамбовской области обладает высокой сорбционной способностью по отношению к ионам Ca2+, Mg2+,Cl-, SO42-, что обуславливает возможность его использования, как природного умягчителя воды, в процессах водоподготовки;

2)     адсорбция ионов Fe2+ глауконитом составляет 70–74 %, в то время как сорбируемость совместно ионов Fe2+ и Fe3+ из водопроводной воды — всего 33 %, что вероятно, связано, при определенных условиях, с выходом ионов трехвалентного железа из кристаллической решетки ионита.

В настоящее время, глауконит, в связи с уникальными сорбционными свойствами по отношению к ионам, обуславливающих жесткость водопроводной воды, используется в качестве ионита в ионообменниках на экспериментальной установке по водоподготовке на базе НПО «ИОНИТ». Как показал анализ образцов воды централизованной системы питьевого водоснабжения, прошедшей через такую экспериментальную установку, ее свойства после водоподготовки значительно улучшаются; по физическим, химическим и санитарно-бактериологическим показателям, утвержденным СанПином 2.1.4.1074–01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», испытательные образцы относятся к питьевой воде первой категории качества.

Литература:

1.                  Вигдорович В. И., Цыганкова Д. В., Николенко Д. В. и др. Адсорбционная способность глауконита Бондарского района Тамбовской области. // Сорбционные и хроматографические процессы. — Воронеж: Воронежский государственный университет. 2010. Т.10. Вып.1. С. 121–126.

2.                  Крупнова Т. Г., Зиганшина К. Р., Антонова Е. Л. Применение глауконита для очистки воды от радиоактивных загрязнений, ионов иттрия и редкоземельных элементов. // Успехи современного естествознания. Материалы конференций. — М.: Академия естествознания. 2004. № 10. С. 78–79.

3.                  Сухарев Ю. И., Кувыкина Е. А. Структурно-морфологические особенности глауконита Багрянского месторождения. // Известия Челябинского научного центра УРО РАН, раздел «Химия и химическая технология». 2000. № 3. С. 77–81.

4.                  Кацнельсон Ю. Я., Алексоньян О. М. Глауконитсодержащие микроконрекции как поглотители радионуклидов. // Минералогия и геохимия глауконита. — Новосибирск. 1981. С. 80–81.

5.                  Сухарев Ю. И., Черногорова А. Е., Кувыкина Е. А. Особенности структуры и сорбционно-обменные свойства глауконита Багрянского месторождения. // Известия Челябинского научного центра УРО РАН. 1999. № 3. С. 64–69.

6.                  Григорьева Е. А. Сорбционные свойства глауконита Каринского месторождения. Дисс. … канд. хим. наук. — Челябинск, 2004. 144 с.

7.                  Николаева И. В. Минералы группы глауконита и эволюция их химического состава. В кн.: Проблемы общей и региональной геологии. — Новосибирск: 1971. С. 320–336.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №12 (59) декабрь 2013 г.
Скачать часть журнала с этой статьей(стр. 52-54):
Часть 1 (стр. 1-209)
Расположение в файле:
стр. 1стр. 52-54стр. 209
Похожие статьи
Использование неорганических сорбентов при очистке сточных вод в нефтяной промышленности
Исследование адсорбционной очистки сточных вод промышленных предприятий карбонатным шламом ТЭС
Закономерности и описание сверхстехиометрической сорбции редкоземельных элементов глауконитом
Определение поглотительной способности наиболее известных адсорбентов
Диагностика показателей качества подземных вод
Использование геохимических барьеров для очистки техногенных вод промышленных зон ликвидированных угольных шахт г. Партизанска Приморского края
Технология очистки отходящих газов высокоамперных алюминиевых электролизеров
Исследование и совершенствование методики улучшения качества питьевой воды на станции водоподготовки из поверхностного источника
Изучение сорбционной способности фильтрующих материалов бытовых фильтров
Использование новой технологии электрохимической активации щелочных реагентов локальных канализационных очистных сооружений для повышения их барьерной функции по отношению к ионам тяжелых металлов

Молодой учёный