Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Сильные средние уклонений операторов Валле Пуссена

Математика
30.11.2013
139
Поделиться
Библиографическое описание
Силин, Е. С. Сильные средние уклонений операторов Валле Пуссена / Е. С. Силин. — Текст : непосредственный // Молодой ученый. — 2013. — № 12 (59). — С. 25-32. — URL: https://moluch.ru/archive/59/8379/.

Работа посвящена распространению результатов исследований сильных средних отклонений операторов Фурье на случай, когда в качестве агрегатов приближения выступают операторы Валле Пуссена.

1. В теории рядов Фурье хорошо известно, что  почти всюду на  выполняется соотношение  где  — частные суммы Фурье функции ,  при .

Харди и Литтлвуд поставили вопрос: будет ли  выполняться более общее соотношение

                                                                (1)

Если соотношение (1) выполнено, то говорят, что ряд Фурье функции  является сильно суммируемым с показателем .

Исследованию сформулированого вопроса для сумм и операторов Фурье на классах -интегралов периодических функций и классах -производных локально интегрируемых функций были посвящены работы [1, 2].

Мы обобщим эти исследования на случай классов -интегралов локально интегрируемых функций когда аппаратом аппроксимации выступают операторы Валле Пуссена.

Сначала приведем определение классов Степанца (см. [3]).

Обозначим через  множество непрерывных при  функций , которые удовлетворяют условия: 1)    возрастает на  2)  выпукла вниз на  и  3) производная  имеет ограниченную вариацию на  Подмножество функций  для которых  обозначают  Множество функций  которые удовлетворяют лишь условию 2) обозначают

Для пары  определим функцию   где  и  — четное и нечетное продолжения функций   соответственно.

Пусть  — множество функций  которые определены на действительной оси и имеют конечную норму  ,  Тогда через  будем обозначать подмножество непрерывных функций  которые для всех  можно представить в виде следующего равенства:

                                                           (2)

где , интеграл понимаем как границу по симметричным расширяющимся промежуткам, , т. е., ,

                     (3)

Если , , то преобразование  суммируемо на действительной оси (см., например, [4]).

Следуя А. И. Степанцу [5], функцию  в изображении (2) называют производной функции  и обозначают .

Для приближения функций из классов  будем использовать операторы Валле Пуссена

      (4)

где , а  преобразование вида (3) функции  в которой

                                 (5)

Такие операторы рассматривались А. И. Степанцом в работах [3, 4, 6], где показано, что при определенных условиях  принадлежат к множеству  целых функций экспоненциального типа , а в периодическом случае, при натуральных  и  операторы  совпадают с суммами Валле Пуссена.

Далее, следуя [4], из множества  выделим подмножества  и . Каждой функции   сопоставим пару функций  и

Тогда:     где   — некоторые постоянные, которые, возможно, зависят от функции .

Аппроксимативные свойства операторов Валле Пуссена в нашей работе характеризуются функционалами

в которых  — некоторая неотрицательная непрерывная при всех  функция.

Положим: ; ;  и .

В принятых обозначениях имеют место утверждения.

Теорема 1.Пусть ,  и такие,что найдутся константы  и  для которых выполняется условие

                                                                   (6)

Числа  удовлетворяют условию:   Пусть, далее,  — произвольное положительное число и функция  такова, что произведение  не возрастает

Тогда, если  то для произвольных  выполняется неравенство

       (7)

в котором  — величина, не зависящая от   и  в качестве величины  может выступать любая из функций  

Теорема 2.Пусть   числа  и   выбраны так, что ,  а функция  такова, что произведение  где  не возрастает

Тогда, если  то для произвольных  выполняется неравенство

        (8)

в котором  — величина не зависящая от   и

Замечание. В случае     и  (т. е., для классов ) теоремы 1 и 2 получены А. И. Степанцом и Н. Л. Пачулиа [2]. Заметим, что в аналоге теоремы 2 рассматривается лишь случай  Для сумм Фурье в периодическом случае аналогичная задача была решена А. И. Степанцом.

2. Доказательство теорем начнем с получения некоторых вспомогательных утверждений. Пусть  Величину  рассмотрим в двух частных случаях, в зависимости от скорости следования к нулю пары функций  .

Лемма 1.Пусть   числа  и   выбраны так, что , постоянная .Тогда  в каждой точке

                                                        (9)

где   — функция из множества  для которой   

Лемма 2.Пусть   и выполнено условие (6), числа  такие, что   Функции ,

Тогда, если  то  и действительных чисел

                                     (10)

где    в роли функции  может выступать любая из функций ,   — функция из  для которой  , и                                                                (11)

3. Пусть  и

                                       (12)

Следующим шагом в доказательстве теорем 1 и 2 будет такое утверждение.

Лемма 3.Пусть   и выполнено условие (6), числа  выбираются так, что , .

Тогда, если  то для любых   

                                                                                    (13)

Если же   числа  и   избраны так, что , постоянная , то    и

                                                       (14)

В соотношениях (13) и (14)  — величина, которая равномерно ограничена по   и .

Доказательство. Из неравенства Гельдера следует, что величина  не убывает по параметру , поэтому неравенства (13) и (14) достаточно доказать лишь при  Сначала докажем неравенство (13).

Используя равенство (10) и неравенство Минковского, получим

                                                 (15)

Поскольку функция  не возрастает, то

               (16)

Перейдем к получению оценки величины  Отметим, что

Применяя неравенство Минковского, получим

                       (17)

Далее,

Поскольку, как было установлено в работе [8, с. 239] (соотношение (14.21)),

                                                                         (18)

то

                                                                                             (19)

Для оценки интеграла  применим неравенство Хаусдорфа-Юнга:

С этой целью положим

Тогда

Поскольку , то

                               (20)

А потому

Итак,

                                                                                               (21)

Сравнивая соотношения (12) и (15) — (21) приходим к оценке (13).

Перейдем к доказательству неравенства (14).

Используя соотношение (9) из леммы 1 и неравенство Минковского, согласно равенства (12), получим

                                               (22)

Поскольку функция  не возрастает, то

                                                                                              (23)

Далее мы воспользуемся соотношением (5.5.4) из работы [7, с. 236], при доказательстве которого периодичность функции  и включение  не использовались, а потому

                                        (24)

Принимая во внимание соотношения (24), имеем

                                                     (25)

Остается установить аналогичную оценку и для интеграла

При каждых фиксированных  и  положим

Применяя неравенство Хаусдорфа-Юнга получим

                                        (26)

При нахождении этого неравенства мы воспользовались также условием  Из соотношений (22) — (23) и (25) — (26) следует неравенство (14).

Лемма 4 окончательно доказана.

4. Перейдем непосредственно к доказательству теоремы 1.

Пусть    Тогда

Выберем числа   исходя из условия

Согласно лемме 3, имеем

Поэтому

        (27)

Поскольку , то, на основании оценки (18),  Следовательно

                                                                       (28)

Функция  не возрастает и . Соответственно,

Поэтому, опираясь на соотношение (28), получаем искомую оценку:

                               (29)

Теорема 1 доказана.

5. Доказательство теоремы 2.

Пусть   тогда, согласно лемме 1,

                                                  (30)

где  и такие, что

В монографии [7, с. 391] для натуральных значений  получена оценка

                                (31)

которая остается верной и в нашем случае , поскольку при ее доказательстве не использовался тот факт, что .

Обозначим:  Согласно условию, числа  не возрастают. Поэтому, учитывая (31), получим

Применяя эту оценку к неравенству (30), находим

Таким образом, теорема 2 окончательно доказана.

Литература:

1.         Степанец А. И. Скорость сходимости группы отклонений на множествах -интегралов // Укр. мат. журн. — 1999. — 51, № 12. — С. 1673–1693.

2.         Степанец А. И., Пачулиа Н. Л. Сильные средние уклонения операторов Фурье // Укр. мат. журн. — 1990. — 42, № 9. — С. 1225–1231.

3.         Stepanets A. I., Wang Kunyang, Zhang Xirong. Approximation of locally integrable function on the real line // Укр. мат. журн. — 1999. — 51, № 11. — С. 1549–1561.

4.         Степанец А. И. Приближение в пространствах локально интегрируемых функций // Укр. мат. журн. — 1994. — 46, № 5. — С. 597–625.

5.         Степанец А. И. Приближение интегралов периодических функций суммами Фурье. — Киев, 1996. — 70 с. — (Препринт / АН Украины. Ин-т математики; 96.11).

6.         Степанец А. И. Приближение операторами Фурье функций, заданных на действительной оси // Укр. мат. журн. — 1988. — 40, № 2. — С. 198–209.

7.         Степанец А. И. Методы теории приближений: В 2 т. — Киев: Ин-т математики НАН Украины, 2002. — Т.1. — 426 с.

8.         Степанец А. И. Методы теории приближений: В 2 т. — Киев: Ин-т математики НАН Украины, 2002. — Т.2. — 468 с.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №12 (59) декабрь 2013 г.
Скачать часть журнала с этой статьей(стр. 25-32):
Часть 1 (стр. 1-209)
Расположение в файле:
стр. 1стр. 25-32стр. 209

Молодой учёный