Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Сокращение парниковых газов на месторождении Тенгиз

Технические науки
25.04.2023
149
Поделиться
Библиографическое описание
Русланулы, Арслан. Сокращение парниковых газов на месторождении Тенгиз / Арслан Русланулы. — Текст : непосредственный // Молодой ученый. — 2023. — № 16 (463). — С. 42-46. — URL: https://moluch.ru/archive/463/101826/.


Исследование показало, что Тенгизская нефть обладает высоким содержанием сернистых веществ, таких как сероводород и меркаптаны, а также других высокомолекулярных инертных соединений. В результате возникает требование к подготовке в соответствии со стандартами ГОСТ. Кроме того, был определен фракционный состав тенгизской нефти. Для удаления нежелательных серосодержащих компонентов был использован процесс, включающий улавливание легкой бензиновой фракции, которая затем предварительно отделяется в ректификационной колонне. Исследование показывает, что применение процесса демеркаптанизации только к фракции масла с температурой кипения 150°C дает значительный технологический и экономический эффект.

Ключевые слова: тенгизская нефть, парниковых газов, бензиновая фракция, физико-химические характеристики, демеркаптанизация, метил- и этилмеркаптаны, сероводород, фракционный состав.

The physical and chemical indicators of Tengiz oil, which is characterized by a high content of sulfurous substances (hydrogen sulfide, mercaptans) and other high-molecular inert compounds, show the need for preparation to meet the requirements of GOST. The fractional composition of oil from the Tengiz field was determined. The alkalization process of a light gasoline fraction with its preliminary separation in the fractional distillation column to remove undesirable sulfur-containing components was applied. It is shown that the use of the demercaptanisation process not of the entire oil, but of a fraction with a boiling point of 150 0C leads to a significant operational and economic benefits.

Keywords: Tengiz oil, gasoline fraction, physical and chemical characteristics, demercaptanisation, methyl- and ethylmercaptans, hydrogen sulfide, fractional composition.

Нефть, содержащая сероводород, может привести к ряду проблем, таких как коррозия трубопроводов и оборудования, отравление катализаторов, низкое качество продукции и загрязнение воздуха. Однако из-за истощения природных запасов серы сероводород является основным источником элементарной серы. Концентрация сероводорода в нефти сильно варьируется в зависимости от месторождения, варьируясь от долей процента до нескольких десятков процентов.

Чем выше содержание серы в масле, тем сложнее его перерабатывать, что требует больших инвестиций и затрудняет получение высококачественной продукции. Сернистые и высокосернистые масла требуют дополнительных ресурсов при переработке, что приводит к большим потерям нефти и нефтепродуктов, более высокому загрязнению окружающей среды углеводородами и соединениями серы, а также к более сложным условиям очистки сточных вод.

Меркаптаны, в частности метиловые и этилмеркаптаны, содержащиеся в нефтяных и газовых конденсатах, могут создавать значительные экологические проблемы при хранении, транспортировке и приемке, особенно на большие расстояния и через густонаселенные районы. Меркаптаны могут вызывать серьезную коррозию оборудования и трубопроводов, увеличивая риск аварий и разливов нефти.

Нефтяное месторождение Тенгиз является значительным источником выбросов парниковых газов (ПГ), в основном состоящих из диоксида углерода (CO2) и метана (CH4). Воздействие выбросов парниковых газов с месторождения Тенгиз является значительным с точки зрения глобального изменения климата и местного загрязнения окружающей среды.

Для сокращения выбросов парниковых газов на месторождении Тенгиз внедряется несколько методов, в том числе:

Улавливание, утилизация и хранение углерода (CCU) — это включает улавливание выбросов CO2 и хранение их под землей, тем самым предотвращая их выброс в атмосферу. Проект будущего роста — Проект управления устьевым давлением (FGP-WPMP) на месторождении Тенгиз включает систему закачки CO2, которая улавливает и накапливает до 4 миллионов тонн CO2 в год.

Сокращение факельного сжигания — Сжигание в факелах является значительным источником выбросов парниковых газов на месторождении Тенгиз. Чтобы уменьшить сжигание в факелах, FGP-WPMP включает систему обратной закачки газа, которая перерабатывает газ, который в противном случае сжигался бы в факеле.

Энергоэффективность — Повышение энергоэффективности на месторождении Тенгиз сокращает количество энергии, необходимой для добычи нефти и газа, тем самым сокращая выбросы парниковых газов. Программа FGP-WPMP включает установку новых компрессоров, теплообменников и турбин, которые повышают энергоэффективность.

Возобновляемая энергетика — На месторождении Тенгиз изучается возможность использования возобновляемых источников энергии, таких как энергия солнца и ветра, для сокращения выбросов парниковых газов.

В целом, внедрение этих методов позволило значительно сократить выбросы парниковых газов на месторождении Тенгиз. Ожидается, что FGP-WPMP сократит выбросы парниковых газов примерно на 25 миллионов тонн в год, что эквивалентно снятию с дорог 5 миллионов автомобилей.

Крупнейшие действующие месторождения Республики Казахстан, включая Карачаганакское и Жанажольское нефтегазоконденсатные месторождения, а также нефтяные месторождения Тенгиз и Кашаган, содержат большую часть выявленных запасов попутного нефтяного газа и природного газа-сырца.

Нефтяное месторождение Тенгиз было открыто в 1979 году и отличается огромными извлекаемыми запасами нефти, а также уникальными энергетическими условиями, такими как аномально высокое пластовое давление и температура, а также большой разрыв между пластовым давлением и давлением насыщения нефти газом. Кроме того, месторождение имеет отличительную геологическую структуру.

В 1993 году американская нефтяная компания Chevron совместно с ВНИИУС рассчитала и экспериментально установила требования к безопасному хранению, транспортировке и переработке нефти с месторождения Тенгиз. Они пришли к выводу, что для обеспечения экологической и технологической безопасности необходимо очистить нефть от сероводорода до 10 частей на миллион и от метилэтилмеркаптанов в общей сложности до 20 частей на миллион. Эти показатели установлены в качестве стандартных требований к Тенгизской нефти в 1997 году и были сохранены в обновленных технических спецификациях, введенных в действие в 2002 году. [1].

Добываемая, на месторождении Тенгиз, нефть проходит соответствующую подготовку и должна отвечать требованиям, приведенным в Табл.1.

На установки демеркаптанизации (ДМК) подается стабилизированная нефть, где происходит удаление легких меркаптанов, и затем обработанная нефть откачивается в резервуарный парк сырой нефти (РПСН).

Физико-химические параметры нефти с Тенгизского нефтяного месторождения следующие:

Плотность при 20 °C: 0,804–0,855 г/см3

Вязкость при 20°C: 11,3–73,3 cSt

Содержание серы: 0,47–0,97 %

Содержание меркаптановой серы: до 0,11 %

Кислотное число: до 0,8 мг КОН/г

Температура застывания: от -16 до -45 °C

Температура вспышки: 32–68 °C

Содержание смолы: до 9,6 %

Содержание асфальтена: до 15,6 %

Углеродный остаток: до 0,77 %

Содержание азота: до 0,11 %

Содержание Wp: до 23,2 %

Эти параметры могут варьироваться в зависимости от конкретного расположения нефтяной скважины и глубины залегания нефтяного пласта.

Таблица 1

Физико-химические показатели нефти месторождения Тенгиз

Показатели качества

Единица измерения

Значения показателей

Содержание воды

% вес

не более 0.5

Содержание мехпримесей

% вес

не более 0.05

Содержание хлористых солей

мг/л

не более 100

Содержание сероводорода

ррm

не более 10

Давление насыщенных паров при 37,8 ºС

мм рт.ст

не более 450

Температура на выходе

ºС

60–65

Содержание метилмеркаптана (СH 3 SH)

ррm

не более 325

Содержание этилмеркаптана (C 2 H 5 SH)

ррm

не более 375

Общее содержание меркаптанов

ррm

не более 1.175

Физико-химические характеристики нефти, поступающей в установку демеркаптанизации нефти на Тенгизском нефтяном месторождении, следующие:

Плотность: Плотность тенгизской нефти колеблется от 0,78 до 0,82 г/см 3 .

Содержание серы: Содержание серы в тенгизской нефти относительно высокое и колеблется от 1,5 до 3 %.

Содержание меркаптана: Содержание меркаптана в тенгизской нефти варьируется в зависимости от фракции, но в основном он сосредоточен в легких фракциях нефти, где его содержание может варьироваться от 40–50 % до 70–75 % всех серосодержащих соединений фракций.

Температура кипения: Температура кипения тенгизского масла колеблется от 30°C до 380°C.

Вязкость: Вязкость тенгизской нефти относительно высока и колеблется от 8 до 16 сСт.

Кислотное число: Кислотное число тенгизского масла колеблется от 0,1 до 0,5 мг КОН/г.

Температура застывания: Температура застывания Тенгизского масла колеблется от –25 °C до –40 °C.

Эти параметры важны при определении подходящего метода демеркаптанизации, который следует использовать для удаления меркаптанов из масла перед дальнейшей переработкой.

Таблица 2

Физико-химическая характеристика нефти, поступающей на установку демеркаптанизации нефти

Показатели качества

Единица измерения

Усредненные значения

Содержание сероводорода

ррm

≤ 20

Давление насыщенных паров при 37,8 ºС

ºС

≤ 450

Температура на входе

60–65

Содержание метилмеркаптана (СH 3 SH)

ррm

≤ 325

Содержание этилмеркаптана (C 2 H 5 SH)

ррm

≤ 375

Содержание пропил меркаптана (С 3 Н 7 SH)

ррm

≤ 225

Содержание бутил меркаптана (С 4 Н 9 SH)

ррm

≤ 60

Содержание амилмеркаптана (С 5 +SH)

ррm

≤ 190

Общее содержание меркаптанов

≤ 1,175

Плотность, градусы АНИ

47

Удельная плотность при 15°C

0.7932

Вязкость при 25°C (при 40°C)

сСт

1.87 (1.60)

Температура застывания нефти

ºС

(-)35 ± 10

Парафин

% вес

4.49–5.24

Широко применяемая технология демеркаптанизации нефти заключается в дегазировании, обезвоживании и обессоливании [2].

Очистка нефти от меркаптанов щелочью осуществляется в 2 этапа:

На первом этапе очистки нефти сероводород в необратимой реакции со щелочью образует сульфид натрия. Эта вторичная необратимая реакция происходит первой и быстро — она зависит от объемного содержания H 2 S в потоке нефти.

Она замедляет очистку от меркаптанов и понижает концентрацию щелочи.

H 2 S + 2 NaOH → Na 2 S + 2H 2 O

Во втором этапе меркаптаны реагируют со щелочью, образуя меркаптиды. Это основная реакция, происходит быстро, но при повышенных температурах (свыше 100°C) может стать обратимой.

RSH + NaOH → RSNa + H 2 O

В ходе процесса очистки нефти протекают и побочные реакции, с образованием нафтената натрия, реакцией щелочи с нафтеновыми кислотами. Ход реакции зависит от содержания нафтеновых кислот в нефти. Данная реакция замедляет очистку от меркаптанов и понижает концентрацию щелочи.

RCOOH + NaOH → RCOONa + H 2 O

Процесс превращения меркаптидов в дисульфиды при окислении приводит к разделению углеводородной и щелочной фаз. Затем регенерированную щелочь смешивают со свежим сырьевым раствором, а масло отправляют на хранение. Чтобы ускорить эту реакцию превращения, в раствор щелочи в точных концентрациях добавляют катализатор окисления, содержащий органические соединения кобальта, в частности фталоцианины кобальта. Большинство меркаптанов содержится в легких фракциях нефти, причем их содержание колеблется от 40–50 % до 70–75 % всех серосодержащих соединений во фракциях. Однако их содержание значительно уменьшается с повышением температуры кипения фракции, при этом меркаптаны практически не присутствуют во фракциях, кипящих выше 300°C. Помимо своей высокой токсичности и летучести, сероводород, метил- и этилмеркаптаны также обладают неприятным запахом и коррозионной активностью. Кроме того, при переработке нефти и газового конденсата неизбежно образуются токсичные сернисто-щелочные сточные воды.

Высокое содержание сероводорода и меркаптанов в нефти и газовом конденсате создает значительные экологические и технологические проблемы при добыче, транспортировке, хранении и переработке. Одним из возможных решений для удаления этих нежелательных серосодержащих компонентов является выщелачивание легкой бензиновой фракции с предварительным разделением в ректификационной колонне. Этот процесс сокращает количество продукта, подлежащего демеркаптанизации, что приводит к снижению капитальных вложений в установку демеркаптанизации.

Технологическое решение этой проблемы включает предварительную стабилизацию, обезвоживание и обессоливание сырья, нагрев его до 180°C в теплообменниках и печах. Колонна оснащена ребойлером для обеспечения восходящего потока и стабильного температурного режима. Затем нагретое масло разделяют на легкую бензиновую и тяжелую нефтяную фракции.

Бензиновую фракцию конденсируют и охлаждают до 40°C с помощью воздушных холодильников, а часть ее возвращают обратно в колонну в виде орошения с регулируемым расходом. Оставшийся бензин с помощью насосов направляется в установку демеркаптанизации. Кубический остаток соединяется с очищенной бензиновой фракцией при температуре 40–45°C после прохождения через систему теплообменного оборудования.

Процесс очистки бензиновой фракции происходит в несколько этапов. Охлажденный поток бензина подается в бак для промывки каустической содой для удаления сероводорода с концентрацией каустической соды 14 мас. %. Время замены едкого раствора определяется на основе полученных аналитических данных и зависит от фактической загрузки установки.

По интервалу кипения нефти сера распределяется неравномерно ‒ в легких фракциях 80–100 0 С ее содержится много, во фракциях 150–220 0 С ее количество обычно минимально и далее к концу кипения существенно нарастает [4].

На основании имеющихся данных физико-химических показателей рассчитывают кривую разгонки на основании выходов фракций при 200 и 300 0 С и рассчитывают выход фракции начала кипения (н.к.) -150 0 С.

Для определения выхода легких фракций до 200 и 300 0 С (В200 и В300, % масс.) из нефти, можно воспользоваться корреляционной связью между выходом и плотностью нефти:

,

где — относительная плотность при 20 0 С. Проведенные расчеты приведены в табл. 3.

Таблица 3

Фракционный состав нефти месторождения Тенгиз

Показатели качества

Единица измерения

Значения

Плотность при 20 0 С

кг/м 3

789

Выход легких фракций до 200 В200

% масс

39

Выход легких фракций до 300 В300

% масс

58

По найденным значениям строят график и рассчитывают уравнение, описывающее эту зависимость (Рисунок 1). На основании линейной зависимости температура — выход фракции находят потенциальное содержание фракции от начала кипения (н.к.) до 150 0 С. Вычисления показывают, что при 150 0 С должно выкипать 27,8 % масс. бензина.

Зависимость фракций от температуры кипения

Рис. 1 Зависимость фракций от температуры кипения

Из рисунка видно, что массовое соотношение среды, предположительно обработанной щелочью, и фактически обработанной среды составляет 0,278:1000. На морском заводе удаление меркаптанов и остатков H2S происходит путем контакта с циркулирующим каустиком в экстракционной колонне. В кубическую часть колонны подается воздух и рассчитанные порции катализатора. Затем бензин фильтруется для отделения частиц щелочи и их присутствия перед отправкой на разгон.

При демеркаптанизации только части н. к.-150 0С вместо всей нефти в нефтедобывающих компаниях могут быть достигнуты значительные технологические и экономические выгоды. Желательно учитывать это при подготовке нефти на установках стабилизации грунта газоперерабатывающего завода.

Литература:

1. Сафин, Р. Р. Направления подготовки сернистых нефтей, газоконденсатов и продуктов их переработки к транспортировке и хранению / Р. Р. Сафин, Ф. Р. Исмагилов // Экология промышленного производства. — 2004. — № 2. — с. 35–39

2. Росляков, А. Д. Анализ технологий очистки углеводородного сырья от сернистых соединений / А. Д. Росляков, В. В. Бурлий // Экология и промышленность России. — 2010. — № 2. — с. 42–45.

3. Дюсенгалиев К. И., Сагинаев А. Т., Кулбатыров Д. К., Борисов Ю. А., Каримов О. Х. Физико-химические характеристики субститутов дисульфидного масла углеводородного сырья // Электронный научный журнал «Нефтегазовое дело». 2016. — № 5–125–139.

4. Мановян А. К. Технология первичной переработки нефти и природного газа: учебное пособие для вузов. М.: Химия, 1999.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
тенгизская нефть
парниковых газов
бензиновая фракция
физико-химические характеристики
демеркаптанизация
метил- и этилмеркаптаны
сероводород
фракционный состав
Молодой учёный №16 (463) апрель 2023 г.
Скачать часть журнала с этой статьей(стр. 42-46):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 42-46стр. 73

Молодой учёный