Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Верификация программных комплексов, используемых для расчета строительных конструкций на динамические нагрузки

Архитектура, дизайн и строительство
07.12.2022
144
Поделиться
Аннотация
В статье производится оценка сходимости результатов прямого динамического расчета на гармоническую нагрузку, выполненного аналитическим методом и методом конечных элементов с использованием программных комплексов.
Библиографическое описание
Шеховцов, А. С. Верификация программных комплексов, используемых для расчета строительных конструкций на динамические нагрузки / А. С. Шеховцов, П. А. Смирнова. — Текст : непосредственный // Молодой ученый. — 2022. — № 49 (444). — С. 68-73. — URL: https://moluch.ru/archive/444/97336.


В статье производится оценка сходимости результатов прямого динамического расчета на гармоническую нагрузку, выполненного аналитическим методом и методом конечных элементов с использованием программных комплексов.

Ключевые слова: метод конечных элементов, динамический расчет, гармонические колебания, расчетная схема, верификация.

Исходные данные для расчета: статически определимая система с 2-мя степенями свободы, l = 2 м, E = 3310000 т/м 2 , I = 312500 см 4 , m 1 = 3 т, m 2 = 1 т. Гармоническая нагрузка — P 0 = 10 т. Резонансная частота  = ɷ 2. Коэффициент неупругого сопротивления у=0,1. Расчетная схема приведена на рисунке 1.

Расчетная схема

Рис. 1. Расчетная схема

Сравнение результатов аналитического расчета будет проводиться с расчетами методом конечных элементов, выполненными в программных комплексах «SCAD ++» версия 21.1.1 и версия 21.9.7.

Для построения расчетных схем использован тип конечного элемента 2 — стержень плоской рамы. Количество узлов в расчетной схеме 21, количество элементов — 20. Для решения задачи используется расчет на динамические воздействия. В качестве воздействия применены гармонические колебания. Количество форм учитываемых колебаний — 2.

Решим задачу аналитическим методом. По формуле Мора с использованием правила Верещагина определим элементы матрицы податливости от действия единичных сил инерции. Перемножая полученные эпюры моментов от единичных усилий получим элементы матрицы податливости А:

Упростив выражения приведем значения перемещений и масс к безразмерным величинам и соответственно.

Вводим матрицу С=АМ, где А — матрица податливости, М — диагональная матрица масс и получаем выражение [2]:

(3)

где υ и  — собственные вектора и собственные числа матрицы С.

Составим характеристическое (частотное) уравнение:

Развернув определитель и решив квадратное уравнение относительно  находим корни характеристического уравнения (собственные числа матрицы С):

Получим частоты собственных колебаний [1]:

Далее вычисляем компоненты собственных векторов и , определяющих форму собственных колебаний [2]. Найденный спектр частот и форм собственных колебаний приведен на рисунке 2.

Отображение форм собственных колебаний (а — 1 форма собственных колебаний, б — 2 форма собственных колебаний)

Рис. 2. Отображение форм собственных колебаний (а — 1 форма собственных колебаний, б — 2 форма собственных колебаний)

На рисунке 3 приведены отображения форм колебаний по 1 и 2 формам колебаний, полученные в программных комплексах.

Отображение форм колебаний, полученных в ПК «SCAD++»

Рис. 3. Отображение форм колебаний, полученных в ПК «SCAD++»

В таблице 1 приведено сравнение результатов расчета собственных частот колебаний, полученных аналитическим расчетом и методом МКЭ.

Таблица 1

Сравнение результатов расчета собственных частот колебаний

Собственная частота

Аналитический метод

ПК «SCAD++» 21.1.1

ПК «SCAD++» 21.9.7

Погрешность

1 форма колебаний

60 рад/сек

60.2 рад/сек

60.2 рад/сек

0.33 %

2 форма колебаний

275 рад/сек

275.87 рад/сек

275.87 рад/сек

0.33 %

Определим внутренние усилия с учетом сил сопротивления при установившихся вынужденных колебаниях системы с резонансной частотой θ= ɷ 2 . Сумма данных составляющих по первой и второй формам колебаний дает силы S' 1 , S' 2 и S 1 '', S 2 ''(рисунок 4, а) от которых на рисунке 4, б изображены эпюры изгибающих моментов М' и М» [2].

Внутренние усилия системы (а — численные значения сил S' и S'', б — эпюры изгибающих моментов М' и М»)

Рис. 4. Внутренние усилия системы (а — численные значения сил S' и S'', б — эпюры изгибающих моментов М' и М»)

Произведём сравнение внутренних усилий, полученных методом конечных элементов с усилиями полученными аналитическим методом. На рисунках 5, 6 приведены значения динамических сил S' и S'' и моментов М' и М'', полученных в ПК «SCAD++» версии 21.1.1, на рисунках 7 и 8 то же для ПК «SCAD++» версии 21.9.7.

Значения динамических сил, полученных в ПК «SCAD++» версия 21.1.1 (а — S'; б — S'')

Рис. 5. Значения динамических сил, полученных в ПК «SCAD++» версия 21.1.1 (а — S'; б — S'')

Значения изгибающих моментов, полученных в ПК «SCAD++» версия 21.1.1; (а — М'; б — М''')

Рис. 6. Значения изгибающих моментов, полученных в ПК «SCAD++» версия 21.1.1; (а — М'; б — М''')

Значения динамических сил, полученных в ПК «SCAD++» версия 21.9.7 (а — S'; б — S'')

Рис. 7. Значения динамических сил, полученных в ПК «SCAD++» версия 21.9.7 (а — S'; б — S'')

Значения изгибающих моментов, полученных в ПК «SCAD++» версия 21.9.7; (а — М'; б — М''')

Рис. 8. Значения изгибающих моментов, полученных в ПК «SCAD++» версия 21.9.7; (а — М'; б — М''')

В таблице 2 приведено сравнение результатов расчета внутренних усилий, полученных аналитическим расчетом и методом конечных элементов.

Таблица 2

Сравнение результатов расчета внутренних усилий

Усилие

Соста-ляющая

точки

Аналит. метод

ПК «SCAD++» 21.1.1

Погр-ть

ПК «SCAD++» 21.9.7

Погр-ть

S

S'

1

0.125 т

12.91 т

10228 %

0.13 т

4 %

2

0.125 т

2.65 т

2020 %

0.12 т

4 %

S''

1

75 т

0.94 т

98.8 %

75 т

0 %

2

25 т

0.77 т

96.9 %

25 т

0 %

M

M'

1

0.25 т

5.13 т∙м

1952 %

0.25 т∙м

0 %

2

0.75 т

36.42 т∙м

4756 %

0.75 т∙м

0 %

M''

1

50 т∙м

1.54 т∙м

69.2 %

49.99 т∙м

0.02 %

2

50 т∙м

4.96 т∙м

9.92 %

50 т∙м

0 %

Полученные аналитическим методом значения и значения, полученные методом конечных элементов в ПК «SCAD++» версии 21.9.7 различаются менее чем на 1 %, при этом значения мнимой составляющей отображаются в противофазе относительно аналитического расчета. Полученные значения в ПК «SCAD++» версии 21.1.1 существенно отличаются от результатов, полученных аналитическим методом не только по величине полученных усилий, но и по характеру их распределения. Как видно из таблицы 2, доминирующее значение имеют составляющие отвечающие действительной составляющей внутренних усилий, в то время как аналитическим расчетом подтверждено подавляющее влияние сил, отвечающих мнимой составляющей.

Амплитудные значения перемещений узлов с учетом сил сопротивления при установившихся вынужденных колебаниях системы с резонансной частотой = ɷ 2 получим исходя из зависимостей [3]:

Сумма составляющих по первой и второй формам колебаний дает амплитуды А' 1 , А' 2 и А 1 '', А 2 ''(рисунок 9).

Суммарные значения амплитуд А' и А''

Рис. 9. Суммарные значения амплитуд А' и А''

Произведём сравнение амплитуд колебаний, полученных методом конечных элементов с амплитудами, полученными аналитическим методом. На рисунках 10 и 11 приведены значения амплитуд колебаний А' и А'', полученных в ПК «SCAD++» версий 21.1.1 и 21.9.7 соответственно.

Значения амплитуд колебаний, полученных в ПК «SCAD++» версии 21.1.1; (а — амплитуд колебаний А'; б — амплитуд колебаний А'')

Рис. 10. Значения амплитуд колебаний, полученных в ПК «SCAD++» версии 21.1.1; (а — амплитуд колебаний А'; б — амплитуд колебаний А'')

Значения амплитуд колебаний, полученных в ПК «SCAD++» версии 21.9.7; (а — амплитуд колебаний А'; б — амплитуд колебаний А'')

Рис. 11. Значения амплитуд колебаний, полученных в ПК «SCAD++» версии 21.9.7; (а — амплитуд колебаний А'; б — амплитуд колебаний А'')

В таблице 3 приведено сравнение результатов расчета амплитуд колебаний, полученных аналитическим методом и методом МКЭ.

Таблица 3

Сравнение результатов расчета амплитуд колебаний

Амплитуда колебаний

точки

Аналитический метод

ПК «SCAD++» 21.1.1

Погрешность

ПК «SCAD++» 21.9.7

Погрешность

А'

1

0.11

5.04

4481 %

0.11

0 %

2

0.34

13.78

3952 %

0.34

0 %

А''

1

3.22

0.74

77 %

3.23

0.31 %

2

3.22

2.19

32 %

3.21

0.31 %

Полученные аналитическим методом значения и значения, полученные методом конечных элементов в ПК «SCAD++» версии 21.9.7 различаются менее чем на 1 %. Полученные значения методом конечных элементов в ПК «SCAD++» версии 21.1.1 значительно отличаются от результатов, полученных аналитическим методом. Анализируя данные, приведенные на рисунке 10(б), можно сделать вывод, что общий вид деформации стержня не совпадает с отображением формы колебаний на рисунке 3.

В настоящее время большинство программных комплексов позволяют выполнить прямой динамический расчет сложных конструктивных систем и облегчить работу инженеру — конструктору. Проведенное сравнение результатов аналитического расчета с результатами расчетов в программных комплексах подтверждают необходимость дополнительной проверки результатов задач, решаемых в программных комплексах. В связи с тем, что разработчики программных комплексов регулярно совершенствуют свои продукты на основе обратной связи от инженерного сообщества, достоверность результатов сильно зависит не только от наименования программного комплекса в котором производится прямой динамический расчет, но и от его версии. Необходимость самостоятельной проверки результатов может быть дополнительно обоснована тем, что в верификационных тестах, разработчики приводят необходимый, но все-таки не полный отчет по всем имеющимся в программных комплексах функциям.

Литература:

  1. Справочник по динамике сооружений. Под ред. Б. Г. Коренева, И. М. Рабиновича. М., Стройиздат, 1972 г. — 511 с.
  2. Строительная механика. Динамика и устойчивость сооружений. А. Ф. Смирнов, А. В. Александров, Б. Я. Лащеников, Н. Н. Шапошников, Стройиздат, 1984 г. — 414 стр.
  3. Инструкция по расчету несущих конструкций промышленных зданий и сооружений на динамические нагрузки ЦНИИСК им. В. А. Кучеренко, Стройиздат, 1970 г.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №49 (444) декабрь 2022 г.
Скачать часть журнала с этой статьей(стр. 68-73):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 68-73стр. 73
Похожие статьи
Гармонический анализ статически неопределимой рамы
Расчет здания с гибким нижним этажом на сейсмическую нагрузку в ПВК «SCAD»
Влияние учета реальной работы узлов на напряженно-деформированное состояние элементов башенной конструкции
К вопросу об определении динамического эффекта в статических расчетах прогрессирующего обрушения
Исследование напряженно-деформированного состояния гнутых карнизных узлов рам
Сравнительный анализ расчета шарнирного узла крепления балки к колонне методом конечных элементов с расчетом по серии
Расчет пластин на действие локальных нагрузок аналитическим методом с применением обобщенных функций
Расчет собственных колебаний вант методом явного интегрирования уравнения движений
Влияние массы падающего груза на продавливание безбалочных перекрытий
Численный метод решения уравнения колебаний балки при разных типах граничных условий

Молодой учёный