Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Анализ работ различных систем когенерации

Технические науки
06.06.2022
84
Поделиться
Библиографическое описание
Валеев, А. И. Анализ работ различных систем когенерации / А. И. Валеев. — Текст : непосредственный // Молодой ученый. — 2022. — № 22 (417). — С. 77-79. — URL: https://moluch.ru/archive/417/92540/.


Когенерация — это комплексная технология использования энергии. При производстве электроэнергии он эффективно использует испаренное скрытое тепло для отопления, что имеет много преимуществ, таких как высокая эффективность использования энергии и защита окружающей среды. Проанализированы технические характеристики нескольких различных форм когенерации, таких как газовые турбины, парогазовые установки и топливные элементы. В этой статье показано, что способ нагрева с помощью когенерации является современным и разумным, который имеет хорошие характеристики для улучшения использования энергии, энергосбережения и сокращения выбросов.

Ключевые слова: когенерация, энергоэффективность, отопление, электроснабжение.

Системы когенерации, также известные как распределенные энергетические системы, определяются как энергия для выработки электроэнергии на стороне пользователя и преобразования отработанного тепла в полезную тепловую энергию, такую как пар или горячая вода для регионального отопления, охлаждения, горячего водоснабжения и промышленного производства [1].

С быстрым развитием мировой экономики противоречие между ресурсами, окружающей средой и устойчивым экономическим ростом становится все больше. В целях решения проблемы нехватки ресурсов и улучшения условий жизни чистое и эффективное использование энергии и устойчивое развитие становятся ключевыми направлениями исследований ученых [2], а также находятся в центре внимания всех стран мира.

В этой статье приведены технические характеристики нескольких различных форм когенерации. Приведены краткие сведения о турбинах, газовых парах и топливных элементах. В этой статье можно увидеть, что способ нагрева в области когенерации является передовым и разумным. Энергетическая система в зоне когенерации использует режим локального производства энергии, который может улучшить способность местного управления энергоснабжением, уменьшить зависимость от электросети и реализовать планирование энергопотребления, которое не может быть выполнено одним зданием. Новые энергетические технологии и различные виды топлива и энергии могут быть безопасно применены, что еще больше повышает автономность системы, а также безопасность и надежность поставок. [3]

Система когенерации газовой турбины

Система когенерации газовой турбины в основном состоит из газовых турбин, паровых турбин, котлов-утилизаторов, генераторов и другого вспомогательного оборудования. Компрессор вдыхает воздух снаружи, чтобы завершить процесс сжатия воздуха, сжатый воздух направляется в камеру сгорания и смешивается с поступающим природным газом для получения высокотемпературного и высоконапорного дымового газа. Высокотемпературный и высоконапорный дымовой газ заставляет турбину вращаться, чтобы работать, а затем вырабатывать электроэнергию. Температура дымовых газов, выходящих из хвостовой части газовой турбины, обычно составляет 500–600 °C, что является хорошим источником тепла для привода. Остаточное тепло, выделяемое хвостовой частью газовой турбины, может быть утилизировано через котел-утилизатор, а вода нагревается с образованием пара высокой температуры и высокого давления, чтобы нагреваться и формировать режим когенерации. Этот относительно простой способ когенерации газовых турбин может значительно повысить тепловую эффективность при небольших инвестициях, небольшой площади помещения, коротком периоде окупаемости инвестиций, быстром запуске, стабильной работе и может эффективно удовлетворять потребности в тепловой энергии на разбросанных небольших площадях.

В настоящее время широко используемые распределенные энергетические системы на природном газе включают систему когенерации, систему тройного снабжения холодом, теплом и электроэнергией и систему когенерации зданий. Когенерация вырабатывает тепло и электроэнергию из одного и того же топлива, и ее типичная структура показана на рисунке 1. С развитием технологий система когенерации постепенно заменяется системой тройного снабжения холодом, теплом и электроэнергией, что еще больше повышает энергоэффективность системы.

Типовая структура когенерации

Рис. 1. Типовая структура когенерации

Комбинированный парогазовый цикл

Газовая когенерационная система с парогазовым комбинированным циклом является более эффективным методом поэтапного производства энергии. Он использует высокотемпературный выхлоп газотурбинной системы с более высокой средней температурой поглощения тепла в качестве движущего источника тепла паровой турбины, осуществляет вторичную выработку электроэнергии и значительно повышает КПД установки. Высокотемпературный дымовой газ, выпускаемый газовой турбиной, поступает в котел-утилизатор для нагрева воды, а затем поступает в паровую турбину, чтобы заставить лопасти паровой турбины работать и вырабатывать электроэнергию. КПД парогазового комбинированного цикла равен сумме КПД газовых турбин и паровых турбин, который в настоящее время может достигать более 60 %. Тройная подача природного газа, холодного, горячего и электроэнергии в основном использует двигатель внутреннего сгорания для сжигания природного газа для выработки электроэнергии, а также дополнительно рекуперирует остаточное тепло после выработки электроэнергии, которое используется для охлаждения, отопления и подачи горячей воды для бытовых нужд. Его типичная структура показана на рисунке 2. Отработанный тепловой пар, вырабатываемый парогазовой комбинированной циркуляционной системой, может быть использован для нагрева, то есть тепло, оставшееся в отработанном паре после работы в паровой турбине, может быть использовано для нагрева первичной чистой воды для отопления. Общий процесс системы отопления заключается в нагреве чистой воды в абсорбирующем тепловом насосе при высокой температуре или обратном давлении выхлопных газов в паровой турбине. После разогрева он конденсируется в воду и поступает обратно в паровую турбину для следующего цикла, который аналогичен системе конденсированной когенерации, работающей на угле. Тепловая эффективность была дополнительно повышена, но первоначальные инвестиции велики, а срок окупаемости инвестиций длительный, что подходит для крупномасштабного регионального электроснабжения и отопления с большими потребностями в электрическом отоплении.

Типовая структура парогазового цикла

Рис. 2. Типовая структура парогазового цикла

Когенерационная система на топливных элементах

Система когенерации на топливных элементах — это новый режим энергоснабжения для небольших установок, который позволяет реализовать теплопроизводительность небольших установок. В настоящее время отечественные исследования в этом аспекте относительно незрелы, а зарубежные технологии относительно продвинуты. Системы микрогенерации в некоторых странах уже давно коммерциализированы, и сфера их применения включает бытовое использование и коммерческое использование. Это микрораспределенная энергия с широким рынком сбыта. Топливный элемент — это устройство, которое преобразует химическую энергию в элементе, нейтрализующем окислители, в электрическую и тепловую энергию. Он в основном состоит из положительных и отрицательных электродов и электролитов. Распространенные топливные элементы включают щелочные топливные элементы, фосфорнокислотные топливные элементы, протонообменные мембранные топливные элементы и т. д.

Возьмем в качестве примера систему когенерации на бытовых топливных элементах. Реакция реактора на топливных элементах для выработки электроэнергии генерирует электрическую и тепловую энергию. Энергия постоянного тока регулируется с помощью преобразователя переменного тока в постоянный и подается в домашнюю сеть и смешивается с электропитанием от общественной сети к домашнему источнику питания; тепловая энергия, вырабатываемая в результате реакции, подается в теплообменник. В теплообменнике вода в системе теплоснабжения может нагревать дом, а летом для обогрева дома можно использовать испарительное холодильное оборудование. Когенерация зданий — это энергетическая система здания, которая решает все потребности здания в электричестве, холоде, тепле и т. д. Типичная структура системы когенерации здания показана на рисунке 3.

Типичная структура системы холодного, теплового и электроснабжения в зданиях

Рис. 3. Типичная структура системы холодного, теплового и электроснабжения в зданиях

Литература:

  1. МДК 4–05–2004. Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения. / Госстрой России — М.: ФГУП ЦПП, 2004–68 с.
  2. Варфоломеев Ю. М., Кокорин О. Я. Отопление и тепловые сети. — М.: ИНФРА-М, 2006. — 480 с.
  3. Деев Л. В., Балахничев Н. А. Котельные установки и их обслуживание. — М.: Высшая школа, 1990. — 240 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
когенерация
энергоэффективность
отопление
электроснабжение
Молодой учёный №22 (417) июнь 2022 г.
Скачать часть журнала с этой статьей(стр. 77-79):
Часть 2 (стр. 69-139)
Расположение в файле:
стр. 69стр. 77-79стр. 139

Молодой учёный