Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Влияние фракционного состава нефти на технологические и конструкционные параметры колонны стабилизации гидрогенизата установки гидроочистки дизельного топлива

Технические науки
17.12.2021
619
Поделиться
Аннотация
Рассматривается работа колонны стабилизации К-201 установки гидроочистки дизельной фракции. Исследования выполнены проведением вычислительного эксперимента с использованием моделирующей программной системы Honeywell UniSim Design, в которой оцениваются оптимальные значения числа ступеней разделения, тарелки питания и рефлюкса при стабилизации гидрогенизата разных нефтей.
Библиографическое описание
Лабзин, Е. А. Влияние фракционного состава нефти на технологические и конструкционные параметры колонны стабилизации гидрогенизата установки гидроочистки дизельного топлива / Е. А. Лабзин, О. В. Хабибрахманова, С. В. Попов, Ж. В. Николаева. — Текст : непосредственный // Молодой ученый. — 2021. — № 51 (393). — С. 43-48. — URL: https://moluch.ru/archive/393/86828.


Рассматривается работа колонны стабилизации К-201 установки гидроочистки дизельной фракции. Исследования выполнены проведением вычислительного эксперимента с использованием моделирующей программной системы Honeywell UniSim Design, в которой оцениваются оптимальные значения числа ступеней разделения, тарелки питания и рефлюкса при стабилизации гидрогенизата разных нефтей.

Ключевые слова: дизельная фракция, установка гидроочистки дизельной фракции, колонна стабилизации гидроочищенной фракции, моделирование, Honeywell UniSim Design.

Введение

Увеличение глубины переработки нефти и современные экологические требования предопределяют значение процесса гидроочистки как одного из основных технологических процессов, предназначенных как для обеспечения тонкой очистки от серы и азота, так и частичного гидрирования ароматических соединений, легкого гидрокрекинга нормальных парафинов, переработки вторичных дистиллятов, содержащих непредельные соединения, и другого.

В распространенном варианте технологической схемы установки гидроочистки дизельной фракции гидрогенизат направляется на стабилизацию фракционного состава путем вывода из него легких углеводородов и бензиновой фракции, при этом увеличение четкости отбора дизельной фракции в колонне стабилизации К-201 обеспечивает необходимое качество товарного продукта и снижение энергозатрат установки [1–4].

Цель работы — моделирование влияния фракционного состава нефти на технологические и конструкционные параметры колонны стабилизации гидрогенизата установки гидроочистки дизельного топлива.

Методы

Исследования проводили с использованием моделирующей системы Honeywell UniSim Design [5]. Для расчета термодинамических свойств компонентов фракций использовали метод Peng-Robinson.

Для проведения расчетов были взяты два вида нефти, а составы соответствующих дизельных фракций, поступающих на гидроочистку, получены в результате моделирования работы основной атмосферной колонны с использованием в качестве сырья этих нефтей, далее из этих дизельных фракций рассчитывался состав нестабильного гидрогенизата.

На рисунке 1 показано распределение фракций для первой из рассматриваемых нефтей (нефть1). Графики ASTM D86 разгонкинестабильного гидрогенизата, полученного из дизельных фракций 2-х нефтей, приведены на рисунке 2. Видно, что составы заметно различаются содержанием в них тяжелых фракций с температурой кипения выше 300 о С, при этом потенциальное содержание в них бензиновых фракций с температурой конца кипения 180 о С различалось примерно в два раза.

Распределение фракций для сырья нефть1 (распечатка в среде Honeywell UniSim Design)

Рис. 1. Распределение фракций для сырья нефть1 (распечатка в среде Honeywell UniSim Design)

Рассматриваемая типовая колонна стабилизации гидрогенизата (рисунок 3) содержит 24 тарелки (эффективность контактного устройства 0.7), сырьё (поток гг-нестаб ) подается на 21-ую тарелку с температурой 250 о С и давлением 201.3 кПа, давление верха и низа колонны 155.3 и 170 кПа соответственно.

Графики ASTM D86 разгонки нестабильного гидрогенизата: (а) — нефть1; (b) — нефть2 (распечатка в среде Honeywell UniSim Design)

Рис. 2. Графики ASTM D86 разгонки нестабильного гидрогенизата: (а) — нефть1; (b) — нефть2 (распечатка в среде Honeywell UniSim Design)

Сходимость расчетных процессов, выполняемых средой Honeywell UniSim Design, достигается по следующим активным спецификациям: потенциальное содержание бензиновых фракций с температурой конца кипения Т кк ASTM_D86_100 % = 180 о C, температура верха Т в =40 о С и содержание в дистилляте фракций, выкипающих при температуре выше 180 о С. Из аппарата отбираются углеводородные газы (поток у/в_газ ), бензин-отгон (поток бензин ) и стабильный гидрогенизат (поток гг-стаб ).

При расчете колонн с разными составами нестабильного гидрогенизата сравнивали достигаемые оценки содержания в дистилляте бензиновых фракций с температурой конца кипения 180 о С, значения рефлюкса и температуры низа аппарата.

Результаты и обсуждение

Результаты расчета колонны К-201 для сырья нефть1 приведены в таблицах 1 и 2, а для сырья нефть2 — в таблицах 3 и 4 соответственно. Изменение температуры по высоте колонны показано на рисунке 4. Видно, что достигнуто четкое разделение газовой и бензиновой фракций от дизельного топлива, что также наглядно подтверждается сравнением графиков ASTM D86 разгонки, приведенных на рисунке 5.

Схема колонны К-201 (распечатка в среде Honeywell UniSim Design)

Рис. 3. Схема колонны К-201 (распечатка в среде Honeywell UniSim Design)

Таблица 1

Рассчитанные технологические режимы колонны К-201 (нефть1) (распечатка в среде Honeywell UniSim Design )

Таблица 2

Рассчитанные фракционные составы потоков колонны К-201 (нефть1) (распечатка в среде Honeywell UniSim Design )

Таблица 3

Технологические режимы колонны К-201 (нефть2) (распечатка в среде Honeywell UniSim Design )

Таблица 4

Фракционные составы потоков колонны К-201 (нефть2) (распечатка в среде Honeywell UniSim Design )

График изменения температуры по высоте колонны К-201: (а) гидрогенизат (нефть1); (b)- гидрогенизат (нефть2) (распечатка в среде Honeywell UniSim Design)

Рис. 4. График изменения температуры по высоте колонны К-201: (а) гидрогенизат (нефть1); (b)- гидрогенизат (нефть2) (распечатка в среде Honeywell UniSim Design)

Графики ASTM D86 разгонки: (а) — нестабильный (цвет красный) и стабильный (цвет синий) гидрогенизат (нефть1); (b) — нестабильный и стабильный гидрогенизат (нефть2) (распечатка в среде Honeywell UniSim Design)

Рис. 5. Графики ASTM D86 разгонки: (а) — нестабильный (цвет красный) и стабильный (цвет синий) гидрогенизат (нефть1); (b) — нестабильный и стабильный гидрогенизат (нефть2) (распечатка в среде Honeywell UniSim Design)

Сопоставление полученных расчетных данных для рассмотренных 2-х видов сырья показывает, что:

— для нестабильного гидрогенизата с низким содержанием бензиновых фракций (сырьё нефть2 ) достигается их четкое разделение (содержание в дистилляте фракций, выкипающих при температурах выше 180 о С, составляет менее Σ 180+ =0,1 %) при невысоком значении флегмового числа (для приведенных расчетов R=1.816, температура низа колонны Т н =239.1÷241.8 о С);

— при более высоком содержании бензиновых фракций (сырьё нефть1 ) получена оценка Σ 180+ =1,4 % при R=6.143 и Т н =262.9 о С, а для более четкого разделения требуется увеличение значения флегмового числа.

Выше отмеченное относится к колонне, имеющей 24 тарелки. Расчеты показывают, что использование аппарата с 28-ю тарелками для стабилизации гидрогенизата с низким содержанием бензиновых фракций практически не сказывается на достигаемой четкости разделения фракций, в то время как для гидрогенизата с большим содержанием бензиновых фракций показатели, приведенные выше, достигаются при меньших значениях флегмового числа, следовательно, для рассматриваемого случая увеличенные капитальные затраты на колонну в дальнейшем будут окупаться за счет снижения эксплуатационных затрат.

Заключение

Проведенный вычислительный эксперимент позволяет отметить, что меньшая «чувствительность» показателей работы колонны стабилизации гидрогенизата к варьированию его фракционного состава достигается при использовании аппарата с числом тарелок большим 24.

Литература:

  1. Аспель Н. Б., Демкина Г. Г. Гидроочистка моторных топлив. — М.: Химия, 1977.- 158 с.
  2. Баннов П. Г. Технология переработки нефти / П. Г. Баннов. — Москва: Изд- во ЦНИИТЭнефтехим, 2000. — 224с.
  3. Ахметов С. А. Технология глубокой переработки нефти и газа. — Уфа: Гилем, 2002. — 669 с.
  4. Мхитарова Д. А. Новейшие достижения в технологии гидроочистки дизельных топлив /Д. А. Мхитарова, Н. Р. Саровойтова, Т. Г. Хаимова // Информационно–аналитический обзор. — Москва, 2009. — 168 с.
  5. Honeywell, Unisim Design User Guide, 2013
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №51 (393) декабрь 2021 г.
Скачать часть журнала с этой статьей(стр. 43-48):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 43-48стр. 73
Похожие статьи
О чёткости разделения компонентов реакционной смеси установки алкилирования изобутана олефинами
Моделирование установки первичной перегонки нефти в режиме энергосбережения
Моделирование процесса разделения фракций реакционной массы установки каталитического крекинга
Проблема построения модели колонны реактивной ректификации на примере мономеризации дициклопентадиена
Современные методы совершенствования процесса гидроочистки дизельной фракции
Математическое моделирование ректификационной колонны в среде Chemcad
Моделирование технологического процесса очисткой попутного газа в среде UniSim Design
К вопросу повышения качественных показателей жидких углеводородов
Использование программного обеспечения Unisim Design в моделировании промысловых сетей сбора и объектов подготовки нефти и газа
Рекомендации по конструкции и режиму работы колонны К-1 установки регенерации метанола УКПГ-1В Ямбургского месторождения

Молодой учёный