В настоящее время разработаны различные способы производства углеродных нанотрубок, такие как электродуговой, лазерное испарение, пиролиз углеводородов и др. Получаемые при этом материалы содержат помимо УНТ примеси аморфного углерода, наночастицы графита и металла катализатора. Поэтому очень важной научной и практической задачей представляется разработка способов очистки УНТ от примесей для получения максимально возможной степени чистоты[1].
Применяют три группы методов очистки УНТ:
- разрушающие,
- неразрушающие,
- комбинированные.
Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления — водород. Методы позволяют выделять УНТ высокой частоты, но связанны с потерями трубок.
Основную массу катализатора и носителя катализатора удаляют отмывкой в серной и азотной кислотах, а также их смеси. Если носителем катализатора служит силикагель, кварц или цеолиты, применяют фтористоводородную кислоту или растворы щелочей. Для удаления оксида алюминия применяют концентрированные растворы щелочей. Металлы-катализаторы, окклюдированные в полости УНТ или окруженные графитовой оболочкой, при этом не удаляются[2].
Аморфный углерод удаляется либо окислением, либо восстановлением. Для восстановления используется водород при температуре не ниже 700 °С, для окисления — воздух, кислород, озон, диоксид углерода или водные растворы окислителей. Окисление на воздухе начинает протекать при температуре 450 °С. При этом часть УНТ (преимущественно наименьшего диаметра) окисляется полностью, что способствует раскрытию остальных трубок и удалению не удаленных при первичной кислотной обработке частиц катализаторов. Последние выводят вторичной отмывкой в кислоте. Для получения наиболее чистого продукта операции кислотной и газовой очистки могут повторяться несколько раз, сочетаться друг с другом и с физическими методами[3].
В некоторых случаях первичную кислотную очистку проводят в две стадии, с использованием сначала разбавленной кислоты (для удаления основной массы катализатора и носителя), а затем концентрированной (для удаления аморфного углерода и очистки поверхности УНТ) с промежуточными операциями фильтрации и промывки.
Поскольку частицы оксидов металлов катализируют окисление УНТ и вызывают снижение выхода очищенного продукта, используется дополнительная операция их пассивирования путем переведения во фториды действием SF6 или других реагентов. Выход очищенных УНТ при этом повышается.
Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию перекрестным током вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны[4,5,6].
Экстрагирование применяется исключительно для удаления фуллеренов, при большом количестве которых их извлекают сероуглеродом или другими органическими растворителями. Для очистки материалов, получаемых дуговым и лазерно-термическим методами разработано несколько способов. "Старый" метод включает операции окисления 5М HNO3 (24 ч, 96 °С), нейтрализацию NaOH, диспергирование в 1% -ном водном растворе тритона Х-100, фильтрацию с перекрестным током. К его недостаткам относится соосаждение гидроксидов Ni и Со вместе с УНТ, трудности удаления графитизированных частиц и органических солей Na, вспенивание при сушке в вакууме, низкая эффективность фильтрации, большая длительность процесса низкий выход очищенных трубок.
«Новый» метод предусматривает окисление 5М HNO3 в течение 6 ч, центрифугирование, промывку и нейтрализацию осадка NaOH, повторное окисление HNO3 с повторным центрифугированием и нейтрализацией, промывку с метанолом, диспергирование в толуоле отфильтровывание. Этот метод также не позволяет добиться полной очистки, хотя по выходу УНТ (50-90%) превосходит «старый» метод.
Использование органических растворителей непосредственно после кипячения в кислоте позволяет удалить 18-20% примесей, половина которых приходится на фуллерены, а другая – на растворимые углеводороды.
Полученные дуговым методом ОУНТ (5% катализатора, состоящего из Ni, Co, FeS с соотношением 1:1:1) сначала окисляли на воздухе при 470 °С в течение 50 мин вращающейся лабораторной печи, затем удаляли примеси металлов многократной промывкой 6 M HCl, добиваясь полного обесцвечивания раствора. Выход ОУНТ, содержащих менее 1 мас.% нелетучего остатка, составил 25-30%.
Разработан процесс очистки дуговых ОУНТ, включающий помимо окисления на воздухе и кипячения в HNO3, обработку раствором HCl и нейтрализацию. УЗ-диспергирование в диметилформамиде или N-метил-2-пирролидоне с последующим центрифугированием, испарением растворителя и вакуумным отжигом при 110 °С.
- Литература:
- Раков Э.Г. Нанотрубки и фуллерены: Учебы. пособие / Э.Г. Раков — М.: Университетская книга, Логос, 2006. - 376 с.
- Гришин Д.А. Синтез углеродных нанотрубок пиролиза метана: дис. канд. техн. наук: 05.17.07 / Гришин Дмитрий Александрович. — Москва, 2005. — 134 с.
- Гевко П. Н., Окотруб А.В., Булушева Л.Г., Юшина И.В. Влияние отжига на оптические спектры поглощения одностенных углеродных нановолокон. Физика твердого тела, 2006, том 48, вып. 5.
- Трефилов В.И., Щур Д.В., Тарасов Б.П., Шульга Ю.М., Черногоренко А.В., Пишук В.К., Загинайченко С.Ю. Фуллерены — основа материлов будущего, Киев, 2001, 148 с.
- Шульга Ю.М., Тарасов Б.П., Криничная Е.П., Мурадян В.Е. и др. Сборник трудов «Фуллерены и фуллереноподобные структуры», Минск, БГУ, 2000, 41.
- Г.А. Аксельруд, А.Д. Молчанов Растворение твердых веществ, М.:«Химия»,1977.