Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Датчики пламени на основе оптоэлектронных элементов

Информационные технологии
31.05.2021
84
Поделиться
Библиографическое описание
Кансейтов, Т. М. Датчики пламени на основе оптоэлектронных элементов / Т. М. Кансейтов. — Текст : непосредственный // Молодой ученый. — 2021. — № 22 (364). — С. 22-24. — URL: https://moluch.ru/archive/364/81578/.


Одними из главных условий проектирования оптоэлектронных датчиков пламени заключаются в следующим:

  1. При проектировании оптоэлектронных датчиков необходимо сконцентрироваться на главном работающим элементе, который и определяет параметры датчика — приемник излучения.
  2. Соответствие устройства различным видам возгорания обеспечивается за счет разнообразия фотоэлектрических характеристик ПИ.
  3. Соответствие устройств к условиям эксплуатации и сопряжённость их с приемно-контрольными приборами и управления (ПКПиУ) получается за счет применения специальных конструкций и электронных схем обработки сигналов.
  4. Устройства работоспособности датчика своими оптическими параметрами должны соответствовать очагу возгорания.

Соответствие устройства различным видам возгорания

В связи с постоянным развитием появляются новые технологии и материалы, которые помогут спроектировать новейшие полупроводниковые многоспектральные, многоэлементные фотогальванические приемники излучения (ПИ), непосредственно преобразующие излучение пламени и фоновых оптических помех.

Применение такого ПИ в качестве главного рабочего в оптоэлектронных датчиках пламени помогает распознать пламя с применением принципа спектральной селекции, когда выделяемое пламенем излучение на фоне различных оптических помех регистрируется в спектре его излучения, излучающих свет, продуктов горения, например паров воды и углекислого газа.

Для выявления пламени при таком способе опознавания не требуется наличия колебаний интенсивности излучения, это является важным условием работы и основным минусом всех известных датчиков пламени, поскольку необходимость работы по «светящимся» источникам дает начало высокому значению ложных срабатываний «светящихся» оптических помех.

Видоизменяя состав полупроводникового материала и спектр пропускания интерференционных фильтров, который входят в состав ПИ, мы получим спектральные характеристики чувствительности оптоэлектронных датчиков пламени, которые будут соответствовать спектру излучения очагов возгорания.

На рисунке 1 изображены спектральные характеристики фоточувствительных элементов (ФЭ), полученные способом, который был описан выше.

Спектральные характеристики ФЭ

Рис. 1. Спектральные характеристики ФЭ

Сравнивая сигналы, которые приходят от каждого ФЭ с спектральной характеристикой, можно с точностью узнать, оптическая помеха или это излучение возгорания.

Соответствие устройств к условиям эксплуатации и сопряжённость их с приемно-контрольными приборами и управления (ПКПиУ)

Полное соответствие датчика нужным условиям пожаробезопасности соответствие должно быть не только по оптическому компоненту (оптический вход датчика), но и по электрическому (электрический выход датчика). В адресно-аналоговых типов датчиков, нужно учитывать возможности построения адресной системы в совокупности с возможностями ПКПиУ и соответствующей им системы.

Главные требования к оптоэлектронному датчику пламени:

  1. Датчик периодически должен посылать на ПКПиУ сигналы о самодиагностике, также посылать сигнал «Неисправность» и сигнал «Пожар».
  2. Датчик должен соответствовать требованиям по взрывобезопасности, рабочий диапазон температур (от –65 до +85 °С), и обладать устойчивостью к агрессивным (оксид серы).
  3. В таком датчике должна быть осуществима возможность дооборудование его адресной меткой (плата).

Соответствие оптических параметров устройства очагам возгорания

В качестве устройства для проверки работоспособности датчиков используются фонари (инфракрасные).

Спектральное распределение излучения фонаря воспроизводит инфракрасные спектры излучения разных видов возгорания, одновременно освещая и направляя луч на датчик. Спектры данного излучения с высокой точностью совпадают со спектрами излучения определенного вида возгорания.

Контроль неисправности (самоконтроль) ПИ реализуется путем присоединения к ПИ инфракрасного излучателя, который помогает направлять излучение обходя систему интерференционных фильтров так, что просвечиваются и диагностируются все фоточувствительные элементы.

При проверке загрязнения входного окна спектр излучения проверочного излучателя и спектрального распределения чувствительности фоточувствительных элементов должны соответствовать друг другу. Фотолюминесцентный излучатель с интерференционными фильтрами используется как проверочный излучатель (контрольный).

При подборе оборудования оптоэлектронных датчиков пламени необходимо:

– Проанализировать и определить вероятные очаги возгорания, помехи (оптические), а также наличие взрывоопасности;

– Проанализировать и определить особенность расположения защищаемых объектов в зоне контроля датчика;

– Изучение паспортах данных (ПС), руководства по эксплуатации (РЭ), сертификатов соответствия датчика.

– Наличие дополнительных требований к датчику, которые не указаны в ПС, РЭ, но которые необходимы при учитывании особенностей защищаемого объекта.

Литература:

  1. Медведев Ф. К., Варфоломеев С. П. и др. Электрон- но-оптические извещатели пламени. ИК-приемники нового поколения // Электроника НТБ. 2000. № 6
  2. Семенов А. С. Интегральная оптика для систем передачи и обработки информации / А. С. Семенов, В. Л. Смирнов, А. В. Шмалько. — М: Радио и связь, 1990. — 224 с.
  3. Н. В. Никоноров, С. М. Шандаров. Волноводная фотоника: учебное пособие, курс лекций. — СПб: СПбГУ ИТМО, 2008. — 143 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №22 (364) май 2021 г.
Скачать часть журнала с этой статьей(стр. 22-24):
Часть 1 (стр. 1-81)
Расположение в файле:
стр. 1стр. 22-24стр. 81

Молодой учёный