Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Статистическое моделирование на ЭВМ непрерывных случайных величин средствами языка программирования R

Информационные технологии
05.06.2020
118
Поделиться
Аннотация
В статье рассматривается моделирование непрерывных случайных величин, вычисление параметров случайных величин по выборке, изучение свойства состоятельности выборочных оценок средствами языка программирования R.
Библиографическое описание
Дмитриев, И. А. Статистическое моделирование на ЭВМ непрерывных случайных величин средствами языка программирования R / И. А. Дмитриев. — Текст : непосредственный // Молодой ученый. — 2020. — № 23 (313). — С. 36-40. — URL: https://moluch.ru/archive/313/71183/.


В статье рассматривается моделирование непрерывных случайных величин, вычисление параметров случайных величин по выборке, изучение свойства состоятельности выборочных оценок средствами языка программирования R.

Ключевые слова: моделирование, непрерывная случайная величина, язык R.

Пользуясь средствами языка программирования «R«, рассмотрим процесс реализации на ЭВМ и исследования на точность алгоритма моделирования непрерывной случайной величины (НСВ), распределенной по логнормальному закону L(m, σ):

(1)

Метод моделирования НСВ ξ с законом распределения L(m, σ) основан на связи логнормального распределения с нормальным N(µ, σ), а также последнего с равномерным R(a, b) распределением [3, стр. 61]:

(2)

Реализуем на языке программирования R функцию LogNorm для моделирования n независимых случайных чисел, имеющих логнормальное распределение:

Рассмотрим результат работы функции LogNorm с параметрами µ = 0.6, σ = 1 при моделирования n = 100 и n = 1000 независимых случайных чисел:

> ksi <- LogNorm(n, 0.6, 1);

На рис. 1–2 представлены графики теоретической плотности вероятности логнормального распределения и гистограммы плотности относительных частот для результатов моделирования n = 100 и n = 1000 НСВ, а на рис. 3–4 отображены графики эмпирической и теоретической функции распределения для соответствующих объёмов выборки. Можем заметить, что с увеличением объема выборки гистограмма плотности относительных частот стремится к полигону распределения вероятностей, а эмпирическая функция распределения — к теоретической.

Рис. 1. График теоретической плотности вероятности и гистограмма плотности относительных частот, n = 100

Рис. 2. График теоретической плотности вероятности и гистограмма плотности относительных частот, n = 1000

Рис. 3. Графики эмпирической и теоретической функции распределения, n = 100

C:\Users\ft\Desktop\курсовая\маг\ст 3\Rplot.png

Рис. 4. Графики эмпирической и теоретической функции распределения, n = 1000

Будем использовать следующий программный код для вычисления выборочных оценок параметров случайных величин по выборке и по интервальному статистическому ряду:

a) По выборке:

Среднее: > tildaX <- mean(log(ksi)); print(tildaX);

Дисперсия: > vd <- var(log(ksi)); print(vd);

Дисперсия (исправленная выборочная):

> MeanV <- function(N, n, X) { return (sum(n*X)/N); }

> SS0<-MeanV(N-1, 1, log(ksi)*log(ksi))-N*(tildaX*tildaX)/(N-1);

> print(SS0);

Среднее квадратическое отклонение: > S<-sqrt(SS0); print(S);

б) По интервальному статистическому ряду:

Cтроим доверительные интервалы для математического ожидания и дисперсии с надежностью γ = 0.95:

Чтобы убедиться в состоятельности выборочной оценки математического ожидания, реализуем средствами языка программирования «R» решение следующих задач: построить график стремления выборочной оценки параметра распределения к параметру распределения по вероятности с увеличением объема выборки n; построить линию параметра; построить доверительные границы, используя неравенство Чебышева. Реализацию решения выполняет следующий программный код:

Графический результат для объёма выборки n = 2000 приведён на рис. 5. На его основании можно утверждать, что с увеличением объёма выборки выборочная оценка математического ожидания стремится по вероятности к теоретическому математическому ожиданию распределения.

Для реализации решения задачи статистического моделирования на ЭВМ непрерывных случайных величин средствами языка программирования «R» на примере логнормального распределения были использованы следующие встроенные функции языка:

runif(n) — моделирование n равномерно распределенных случайных величин от 0 до 1;

rep(0, n) — создание вектора из n нулей;

log(x) — вычисление натурального логарифма числа x;

sqrt(x) — вычисление квадратного корня числа x;

mean(x) — вычисление математического ожидания вектора х;

var(x) — вычисление дисперсии вектора x;

exp(x) — вычисление экспоненты числа x;

sum(x) — вычисление суммы элементов вектора x.

Рис. 5. График сходимости выборочной оценки к параметру распределения, n=2000.

Литература:

  1. Лобач В. И. Имитационное и статистическое моделирование: Практикум для студентов мат. и экон. спец. / В. И. Лобач, В. П. Кирлица, В. И. Малюгин, С. Н. Сталевская. — Минск: БГУ, 2004. — 189 с.
  2. Харин Ю. С., Степанова М. Д. Практикум на ЭВМ по математической статистике. — Минск: Университетское, 1987. — 304 с.
  3. Хастингс Н., Пикок Дж. Справочник по статистическим распределениям. — М.: Статистика, 1980. — 95 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
моделирование
непрерывная случайная величина
язык R
Молодой учёный №23 (313) июнь 2020 г.
Скачать часть журнала с этой статьей(стр. 36-40):
Часть 1 (стр. 1-85)
Расположение в файле:
стр. 1стр. 36-40стр. 85

Молодой учёный