Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Some interesting methods of solving functional equations

Математика
10.08.2019
69
Поделиться
Библиографическое описание
Саматбоева, М. Т. Some interesting methods of solving functional equations / М. Т. Саматбоева. — Текст : непосредственный // Молодой ученый. — 2019. — № 32 (270). — С. 1-5. — URL: https://moluch.ru/archive/270/61843/.


The article presents different ways of solving functional equations that occur in olimpiads and contests.

В статье представлены разные способы решения функциональных равенств, которые встречаются на олимпиадах и на конкурсах.

  1. Find all functions such that

is nonzero and holds for all [1].

Solution: Let be the assertion .

From we get

: and

, so

By subtracting the second equation from the first we get

(*). Now: Let be the assertion

We have , so

Again by subtracting the second equation from the first we get: Now for ,

We know natural divisors of are Then must be equal one of these . So we consider eight cases:

1) Suppose .

In (*) from , is clear and such prime number is not exist.

2) Suppose . From (*), . is clear and in we have such prime number is not exist.

3) Suppose . From (*),

In , Contradiction. is satisfied. is not satisfied.

For , such prime number only

4) Suppose . In (*), For any prime ,

. such prime number is not exist.

5) . Such as can not be.

6)Suppose . In (*), But for any prime ,

. such prime number is not exist

7) . Such as can not be.

So for any , Now from

. From this we get

By subtracting the second equation from the first we get: And also we have

. By subtracting these we get

Now assume . Then and for prime numbers, From this But for enough large - prime number this is not true, because, such - prime number infinite. Contradiction. So we conclude, such is not exist. For ,

  1. Find all functions such that holds for all [2].

Solution: be the assertion .

: Now consider this set . Values of elements of are bounded, lies between and . Let the smallest. We have . . But because of the smallest, so for . Now assume . : Also we have In this for (

Then . this number is positive and costanta, but is unbounded. Contradiction. So we get . From this equality we conclude the biggest element’s value and the smallest element’s value of are equal. All element’s value of equal to .

. : and

toq

For , from this,

So, But unbounded, but is positive Contradiction. So, such is not exist. , This is indeed a solution.

  1. Find all functions such that for all

[3].

Solution: be the assertion .

: (here ) .

:

From this Now for , (**).

: .

: . : : From (**).

: For . ( is clear). for all . This is indeed a solution

  1. Find all functions for all

[3].

Solution: be the assertion .

: injective and : . In this equality : .

: Because of injective: or If , from Contradiction We have the following equalities:

:

: (in (**) :

). Because of injective:

. In this equality : . From (***): . we can write (***):

: (****) : .

.

  1. Find all functions for all [1].

.

Solution: be the assertion (*).

:

: In this equality . using this equality we can rewrite (*).

.

: : 2. In this equality :

Now using this and (**) we get

. So . (****). Assume : (: ). from (***)

: But from (****) or Contradiction. Such is not exist. ,

  1. Find all functions such that for the following equalities hold:

, .

Yechim: be the assertion .

:

: (*).

Let . -case: suppose . In (*) :

: : Contradiction.

-case: suppose . In (*) : So, If then from we get . So If , according to second condition, .

-case: . : . :

: Using this and (**), for , (***).Using this we can rewrite initial equality:

from (***) For

: So,

In (****) : , From (***), for ,

References:

  1. www.artofproblemsolving.com/community/c482986. IMO Shortlisted problems 2016.
  2. Mohammad Mahdi Taheri. “Functional equations in mathematical competitions: Problems and solutions” July 1, 2015.
  3. Ozgur Kircak. “Functional equations” April 8, 2011.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №32 (270) август 2019 г.
Скачать часть журнала с этой статьей(стр. 1-5):
Часть 1 (стр. 1-91)
Расположение в файле:
стр. 1стр. 1-5стр. 91

Молодой учёный