Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Вид производных динамических структур кинематических деревьев

Математика
01.07.2019
26
Поделиться
Библиографическое описание
Злобин, Д. Ю. Вид производных динамических структур кинематических деревьев / Д. Ю. Злобин, О. С. Желонкина. — Текст : непосредственный // Молодой ученый. — 2019. — № 26 (264). — С. 12-14. — URL: https://moluch.ru/archive/264/61273/.


В работе находится вид производных динамических структур кинематических деревьев тел (кинетического момента и количества движения). Данные структуры необходимы для решения динамических задач систем тел.

Ключевые слова: кинематические деревья, робототехника, кинематика деревьев тел, динамические структуры, кинетический момент, количество движения, тензорное исчисление.

Для практического решения задач динамики иногда требуется по заданному движению определить динамические структуры абсолютно твердых тел и их производные:

  1. — количество движения тела ,
  2. — кинетический момент тела относительно центра масс тела.

Пусть — множество тел системы. Структура связей между телами из множества эквивалентна неориентированному дереву [4] . Если то между телами имеется связь (сочленение) допускающее их относительное вращательное движение. — изоморфный для ориентированный граф:

.

Явный вид выражений динамических характеристик может быть достаточно громоздким. Для его нахождения введем следующие обозначения:

  1. — путь (последовательность ребер) из вершины в вершину ориентированного графа ,
  2. — упорядоченная последовательность вершин, соответствующая пути ,
  3. — тензор ориентации тела ,
  4. — тензор инерции тела в отсчетный момент времени,
  5. — угловая скорость тела ,
  6. — радиус-вектор центра масс тела A относительно неподвижной в данной инерциальной системе отсчета точки,
  7. — скорость центра масс тела A,
  8. — смена направления ребра графа.
  9. — радиус-вектор неподвижной точки сочленения тел в теле относительно центра масс тела .

Фиксируем тело . Предполагая, что тензоры ориентации звеньев кинематического дерева выражаются последовательными поворотами, положим:

,

.

Здесь — тензор относительной ориентации тела относительно тела . Таким образом записанное выражение является в совокупности неявным определением тензоров . Перепишем это определение в явной форме, учитывая, что тензор ориентации принадлежит собственно ортогональной подгруппе:

.(1)

Под понимается предыдущее по отношению к телу тело в дереве с корнем . Выражение (1) допустимо так как у каждого тела существует единственное предшествующее тело в дереве , кроме самого корня дерева. Однако, положим, что — единичный тензор. Тогда выражение допустимо для всех тел в кинематическом дереве.

Вычислим теперь кинематические характеристики тел, выраженные через характеристики относительных поворотов (далее — угловая скорость относительного вращения; — операция нахождения векторного инварианта тензора [1, 2]). Положим , для любого тела кинематического дерева, в соответствии с тензорной теоремой сложения угловых скоростей и теоремой о распределении скоростей в твердом теле [1,2,3], можем записать:

(2, 3)

При этом положение центра масс задается выражением:

Раскрывая итеративно (2, 3) вдоль пути , получаем явные выражения:

Продифференцируем полученные равенства:

После вычисления кинематических характеристик стандартно вычисляются производные динамических структур и сами динамические характеристики тел системы [1] :

  1. ,
  2. ,
  3. .

— правый вектор угловой скорости.

Выполнив все изложенные шаги, придем к такому виду, что , оказываются однозначно параметризованны посредством , , . Таким образом с помощью задания данных тензорных параметров можно однозначно найти производную кинетического момента и количества движения всех твердых тел в системе. Для каждого конкретного механизма могут накладываться различные ограничения на тензоры относительных ориентаций тел. В этом случае количество независимых параметров оказывается меньше, чем количество указанных ранее параметров, в таком случае, по крайней мере локально, можно разрешить ограничения, наложенные на систему, и уменьшить количество переменных тензоров до числа независимых в локальной окрестности. Таким образом вид динамических структур и их производных найден.

Литература:

  1. Жилин П. А. Динамика твердого тела. СПбГПУ, 2014.
  2. Жилин П. А. Векторы и тензоры второго ранга в трехмерном пространстве. СПбГПУ, 2012.
  3. Бабаджанянц Л. К., Пупышева Ю. Ю., Пупышев Ю. А. Классическая механика. Издательство Санкт-Петербургского Университета, 2011.
  4. Оре О. Теория графов. Наука, 1980.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
кинематические деревья
робототехника
кинематика деревьев тел
динамические структуры
кинетический момент
количество движения
тензорное исчисление
Молодой учёный №26 (264) июнь 2019 г.
Скачать часть журнала с этой статьей(стр. 12-14):
Часть 1 (стр. 1-93)
Расположение в файле:
стр. 1стр. 12-14стр. 93

Молодой учёный