Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Реализация программных средств трёхмерного моделирования клеточной структуры биологических тканей

Информационные технологии
22.06.2019
111
Поделиться
Библиографическое описание
Реализация программных средств трёхмерного моделирования клеточной структуры биологических тканей / А. В. Мазова, В. С. Костыренко, В. Я. Ревякина [и др.]. — Текст : непосредственный // Молодой ученый. — 2019. — № 25 (263). — С. 31-33. — URL: https://moluch.ru/archive/263/61029/.


В статье описывается процесс разработки графа клеточных взаимодействий для исследования трёхмерных моделей структуры живых тканей. Описываемое программное обеспечение позволяет строить и исследовать такие модели, созданные в рамках теории трёхмерной гистологии (разработанной Г. А. Савостьяновым), которые невозможно построить с помощью текущих средств.

Ключевые слова: клетка, геометрический центр, граф клеточных взаимодействий, 3D гистология.

Гистология — раздел биологии, изучающий строение тканей живых организмов. Для классической гистологии является традиционным изучение структуры тканей, основанное на изучении её двумерных срезов. Эти методы, однако, не дают верного представления о трёхмерной структуре ткани, поэтому современные специалисты изучают геометрические особенности отдельно взятых клеток.

Геннадий Александрович Савостьянов описывал подход к 3D моделированию структуры биологической ткани [1]. Он ввёл понятие гистион, как элементарную единицы многоклеточности. Гистионы — это группы клеток, которые возникают в результате разделения функций между клетками. Пласты рассматриваются как регулярные клеточные решетки, образующиеся путём полимеризации гистионов. Также Севастьянов предлагает подход к описанию возникновения стволовых клеток в развитии многоклеточных организмов [2]. Основа подхода — форматизированное описание становления гистионов путём приобретения и реализации потенций для осуществления процедуры разделения функций между клетками.

Важным аспектом для изучения является пространственная организация тканей, т. е. внутреннее расположение клеток в ткани. Существует гипотеза, что при патологиях (например, раковой опухоли), происходит изменение не клеток, а структуры ткани, т. е. взаимного расположения клеток относительно друг друга, а также и способа взаимодействия клеток между собой. Исследования, ищущие причины рака внутри клеток, являются неудачными, что может косвенно подтверждать эту гипотезу.

В связи с этим, появилась необходимость построения графа клеточных взаимодействий.

Графом клеточных взаимосвязей (или «этажеркой») является представление топологии клеточной сети пласта в целом (Рис 1).

Рис. 1. Сенсорный эпителий органа слуха голубя и представление решетки в виде графа клеточных взаимосвязей

В таком виде у модели можно рассмотреть, каким образом связан каждый уровень друг с другом. Легче становится проследить непосредственно за изменением или нарушением отношений между клетками внутри одного гистиона.

Идея построения

Каждая клетка в программе состоит из нескольких слоёв. Построение «этажерки» заключается в том, чтобы каждый слой представить в виде вершин графа, которые затем будут соединены ребрами. В пределах одной клетки построить её представление в виде графа не составляет труда. В пределах гистиона это уже сложнее, т. к. приходится применять определённые методы для того, чтобы определить, находятся ли рядом с рассматриваемой клеткой ещё одна для того, чтобы связать их вершины рёбрами.

Для построения «этажерки» используется следующий алгоритм:

  1. Рассчитывается центр каждого отдельно взятого слоя.
  2. Вершины в пределах одной клетки соединяются рёбрами.
  3. Для каждой клетки происходит поиск рядом лежащих клеток.
  4. Достраиваются межклеточные рёбра.

Геометрический центр

Геометрический центр, или барицентр [3] — это среднее арифметическое положение всех точек фигуры. Фигуры, образующие слои клеток, могут состоять как из одной точки, так и из нескольких. Для каждого случая необходимо находить геометрический центр по координатам точек.

Определение местоположения барицентра для конечного множества точек.

Барицентр конечного множества из k точек в находится по формуле:

Полученная G такая, что сумма расстояний между точками множества и ней является минимальной.

Промежуточный результат выполнения алгоритма можно наблюдать на Рис 2. В пункте 3 ставится задача поиска для каждой клетки клеток, с которыми она граничит. Необходимо понять, какие вершины потребуется соединить ребрами.

Рис. 2. Гистион и его отдельное представление его клеток в виде графа клеточных взаимосвязей

Процесс нахождения соседних клеток

Для того, чтобы реализовать для каждой клетки поиск её соседей, нужно понять, как они стыкуются. Выполнятся следующее правило: клетка A стыкуется на уровне (слое) n с клеткой B на её уровне (слое) m, если n и m имеют хотя бы две общие вершины. Вершины считаются общими, если расстояние между ними <0,1. В случае, если слой n или m состоит из одной вершины, клетки считаются соприкасающимися на этом уровне. Таким образом проверяются все вершины каждой клетки и, в зависимости от результата проверки, строятся рёбра.

Итогом работы алгоритма является построенный граф структурных взаимосвязей клеток (Рис 3).

Рис. 3. Гистион, представленный графом клеточных взаимодействий

Литература:

1. Савостьянов Г. А. Возникновение элементарных единиц многоклеточности и формирование пространственной организации клеточных пластов, 2012. 165 с.

2. Савостьянов Г. А. Возникновение стволовых клеток в развитии многоклеточности и их количественная характеристика, 2016. 557 с.

3. Барицентр // Свободная энциклопедия википедия URL: https://ru.wikipedia.org/wiki/Барицентр (дата обращения: 07.04.2019).

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
клетка
геометрический центр
граф клеточных взаимодействий
3D гистология
Молодой учёный №25 (263) июнь 2019 г.
Скачать часть журнала с этой статьей(стр. 31-33):
Часть 1 (стр. 1-89)
Расположение в файле:
стр. 1стр. 31-33стр. 89

Молодой учёный