Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Численные методы решения систем линейных алгебраических уравнений. Метод Гаусса

Информационные технологии
06.03.2019
3340
Поделиться
Библиографическое описание
Численные методы решения систем линейных алгебраических уравнений. Метод Гаусса / А. У. Майканова, М. Ю. Шонин, С. А. Бекмухометова [и др.]. — Текст : непосредственный // Молодой ученый. — 2019. — № 10 (248). — С. 1-5. — URL: https://moluch.ru/archive/248/56999/.


В статье рассматривается алгоритм метода Гаусса для решения систем линейных алгебраических уравнений. Выбран язык Maple, как наиболее оптимальный для реализации алгоритма. В статье содержится листинг программного кода.

Ключевые слова: система линейных алгебраических уравнений, метод Гаусса, алгоритм реализации метода Гаусса, прямой и обратный ход, программный код.

В прикладных задачах довольно часто приходится решать системы линейных алгебраических уравнений (СЛАУ). Это не удивительно, поскольку математические модели тех или иных процессов либо сразу строятся как СЛАУ, либо сводятся к таковым посредством дискретизации или линеаризации.

Метод Гаусса прекрасно подходит для решения СЛАУ. Являясь наиболее мощным и универсальным инструментом для нахождения решения СЛАУ, он обладает рядом преимуществ: 1) нет необходимости предварительно исследовать систему уравнений на совместность; 2) методом Гаусса можно решать не только СЛАУ, в которых число уравнений совпадает с количеством неизвестных переменных и основная матрица системы невырожденная, но и системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равен нулю; 3) метод Гаусса приводит к результату при сравнительно небольшом количестве вычислительных операций.

Но главное, что было отмечено в работе «Метод Гаусса в школе» М. Ю. Шонина и Л. А. Мамедалиной, «Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах» [3].

Настоящая статья посвящена составлению и апробации алгоритма численного решения СЛАУ в соответствии с алгоритмом метода Гаусса. Рассмотрим следующую задачу.

Задача. Решить систему линейных алгебраических уравнений [1]

Решение:

Для численного решения СЛАУ воспользуемся математическим пакетом Maple 15. В соответствии с условием задачи имеем:

и

Для эффективной работы в необходимо разбираться в тонкостях языка. К ним относится, например, команда и переменная .

Команда — очищает память . Это означает, что все определенные для этого в программе переменные и другие объекты будут стерты. При этом текст программы останется неизменным. Данная функция необходима для осуществления компиляции.

Переменная возвращает необходимое количество знаков после запятой . Установим точность вычисления . Поскольку нам придется иметь дело с матрицей и вектор-столбцом, то необходимо подключить библиотеку линейной алгебры — . Введем данные в программу.

>

>

>

>

>

>

>

В соответствии с логикой метода Гаусса, программа должна привести матрицу к треугольному виду (Прямой ход). Целесообразно воспользоваться циклом со счетчиком . Цикл предназначен для реализации итерационных (повторяющихся) действий [2].

>

>

>

>

>

Следующий этап — обратный ход, построчное вычисление входящих в систему переменных и их вывод на экран.

>

>

>

Заключительным этапом программы служит проверка адекватности найденного решения. Для этого воспользуемся командой решения СЛАУ — .

>

Найдем абсолютную погрешность (модуль разности значений переменных, полученных путем численного решения и при помощи встроенной команды соответственно). Команда выполняет операции над матрицами. Команда возвращает абсолютные значения.

>

Анализируя последние результаты, можно констатировать высокую точность вычисления. Таким образом, разработанная программа вполне адекватна для решения СЛАУ.

Литература:

  1. Ильин В. А. Линейная алгебра: Учебник для вузов / В. А. Ильин, Э. Г. Позняк. — 6-е изд., стер. — М.: Физматлит, 2004. — 280 с.
  2. Кирсанов М. Н. Практика программирования в системе Maple. — М.: Издательский дом МЭИ, 2011. — 208 с.
  3. Мамедалина Л. А. Метод Гаусса в решении СЛАУ в школе / Л. А. Мамедалина, М. Ю. Шонин // Весенний школьный марафон: материалы III Междунар. науч.-практ. конф. школьников (Чебоксары, 31 мая 2016 г.) / редкол.: О. Н. Широков [и др.] — Чебоксары: ЦНС «Интерактив плюс», 2016. — С. 139–143.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
система линейных алгебраических уравнений
метод Гаусса
алгоритм реализации метода Гаусса
прямой и обратный ход
программный код
Молодой учёный №10 (248) март 2019 г.
Скачать часть журнала с этой статьей(стр. 1-5):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 1-5стр. 73

Молодой учёный