Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Разработка электрического термопреобразователя от солнечного коллектора

Спецвыпуск
19.12.2016
119
Поделиться
Аннотация
В данной статье рассмотрено описание термопреобразователя для измерения температуры, его виды, таблица основных характеристик, места эксплуатации, виды устройств, в которых он применяется с подробным описанием работы, также составлена основная формула для определения значения термоэлектродвижущей силы, рассмотрен ряд достоинств и недостатков с подробным рассмотрением.
Библиографическое описание
Скороходов, В. И. Разработка электрического термопреобразователя от солнечного коллектора / В. И. Скороходов, Д. О. Шкандюк, Г. Ю. Киселёв. — Текст : непосредственный // Молодой ученый. — 2016. — № 28.2 (132.2). — С. 81-84. — URL: https://moluch.ru/archive/132/36968/.


В данной статье рассмотрено описание термопреобразователя для измерения температуры, его виды, таблица основных характеристик, места эксплуатации, виды устройств, в которых он применяется с подробным описанием работы, также составлена основная формула для определения значения термоэлектродвижущей силы, рассмотрен ряд достоинств и недостатков с подробным рассмотрением.

Ключевые слова: термопреобразователь, солнечный коллектор, измерение температуры.

Востребованность альтернативных источников энергии ставит новые цели в улучшении способов преобразования, и хранения электрической энергии. Одним из альтернативных источников энергии является солнечная [1]. Её преобразовывают с помощью коллекторов, в основе которых лежит электрический термопреобразователь. Это устройство, предназначенное для измерения температуры, состоящее из двух неоднородных проводников, контактирующих друг с другом в одной или нескольких точках, которые иногда соединяют компенсационные провода. В тот момент времени, когда на одном из участков изменяется температура, создается установленное напряжение.

Электрические термопреобразователи также имеют другое название – термопары (рис. 1) [2]. Термопары в основном используют для контроля температур веществ, имеющие разнообразные агрегатные состояния, а также для преобразования температуры в энергию, в частности, в электрический ток [3].

Рис.1. Термопара

Существует два основных вида подключения термопары к приборам измерения и преобразования (рис 2). В первом случае прибор подключен непосредственно к свободным концам термоэлектродов (а), а во втором в разрыв одного термоэлектрода (б) [4].

Схемы включения термопары в измерительную цепь: а - измерительный прибор 1 подключен соединительными проводами 2 к...

а) б)

Рис.2. Схемы подключения термопары к приборам измерения и преобразования.

1 - прибор измерения или преобразования; 2 - соединительные провода; 3,4 - термоэлектроды; Т 1, Т2 - температуры "горячего" и "холодного" спаев

Величину термо-ЭДС можно определить по следующей формуле:

Εтт*12),(1)

где - постоянный коэффициент пропорциональности [5].

Основным назначением электрических термопреобразователей является высокоточное определение температуры физических объектов различного строения и сред с разными агрегатными состояниями. Также термопары используют для автоматизированных систем в роли контроллеров температуры. Измерение температур с помощью термопар получило широкое распространение из-за надежной конструкции датчика, возможности работать в широком диапазоне температур и дешевизны.

Для создания термопары применяют чистые материалы и различные сплавы с высоким электрическим сопротивлением. На данный момент времени самая эффективная высокотемпературная термопара-это сплав вольфрам-рений, её придельная температура измерений равна 2500о С [6]. Особенностью их использования является необходимость устранения окислительной атмосферы, разрушающей проволоку. Для вольфрам-рениевых термопар используют специальные герметичные конструкции чехлов, заполненные инертным газом, а также танталовые и молибденовые чехлы с неорганической изоляцией из оксида бериллия и оксида магния. Одно из важных применений вольфрам-рениевых термопар состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.

Как и любое устройство термопара имеет свою основную характеристики, которыми являются:

– градуировочная характеристика – обуславливает значение зависимости между температурой рабочего спая и значением термоЭДС термопары;

– чувствительность;

– погрешность

Термопара имеет следующие причины погрешности: отклонение от стандарта характеристик термопары; непостоянство характеристики термопары с течением времени; у защитной арматуры в процессе лучеиспускания и теплопроводности происходит потеря тепла; температура свободных концов отклоняется от градуировочных значений; инерция, происходящая от тепла;

От стандартных значений характеристик термопары отклоненные характеристики, обуславливаются следующими причинами: термоэлектроды имеют в составе разнородные сплавы, напряжениями, вызванными механическими способами и др.

В таблице 1 представлены наиболее распространенные виды термопар, применяемых в различных сферах [7].

Таблица 1

Виды термопар

Тип термо-
пары

Буквенное обозна-
чение НСХ*

Материал термоэлектродов

Коэффициент термоЭДС, мкв/°С (в диапазоне температур, °С)

Диапазон рабочих температур, °С

Предельная температура при кратко временном применении, °С

положительного

отрицательного

ТЖК

J

Железо (Fe)

Сплав константен (45% Сu + 45% Ni, Mn, Fe)

50-64 (0-800)

от -200 до +750

900

ТХК

L

Сплав хромель (90,5% Ni + 9,5% Сr)

Сплав копель (56% Си + 44% Ni}

64-88 (0-600)

от -200 до +600

800

ТПП10

S

Сплав платина-родий (87% Pt - 13% Rh)

платина (Pt)

10-14 (600-1600)

от 0 до +1300

1600

ТПР

В

Сплав платина-родий (70% Pt - 30% Rh}

Сплав платина-родий (94% Pt-6%Rh)

10-14(1000-1800)

от 600 до+1700

1800

ТВР

А-1
А-2
А-3

Сплав вольфрам-рений (95% W - 5% Re)

Сплав вольфрам-рений (80% W-20% Re)

14-7 (1300-2500)

от 0 до +2200
от 0 до +1800
от 0 до +1800

2500

Термопары в настоящее время нашли широкое применение в промышленности и бытовой сфере. Их стали применять для контроля температуры двигателей разного назначения, электрических и газовых котлов, в автономных системах отопления. В 20—30-х годах прошлого столетия термопары имели совсем необычное применение. Они питали радиоприемники простейшего исполнения, а также некоторые другие приборы имеющие малый ток.

Электрические термопреобразователи используются в насадочных колоннах, где они измеряют температуру разделяемого либо перерабатываемого вещества [8]. Применяется также в установках для исследования термоосмотического течения воды в пористых стеклах [9]. В установках для измерения токов разрядки, где термопара измеряет температуру в измерительной ячейке установки [10].

Термопара применяется в системе газ-контроль. При возникновении утечки газа специальное устройство, состоящее из термопары и электромагнитного клапана, перекрывает подачу газа в устройстве, что обеспечивает безопасность работы. Принцип работы механизма таков: спай термопары находится непосредственно в месте горения газа, тем самым на другом конце образуется слабый электрический ток, поддерживающий электромагнитный клапан открытым. Как только происходит прекращение горения газа, спай охлаждается и тем самым электрический ток на других концах ослабевает и вовсе пропадает, что позволяет внутреннему механизму привести клапан в закрытое положение, предотвращая утечку газа.

Любое техническое устройство имеет свой ряд достоинств и недостатков. Электрический термопреобразователь имеет следующие достоинства:

– высокая точность измерения значений температуры (вплоть до ±0,01 °С), что позволяет точно определять температуру;

– большой температурный диапазон измерения: от −250 °C до +2500 °C, применение возможно при любом агрегатном состоянии вещества;

– простота конструкции, не будет возникать затруднений при установке;

– низкая стоимость, что существенно облегчает ее внедрение;

– высокая надежность, что означает выход устройства из эксплуатации сведено к минимуму.

И, следовательно, у него есть свои недостатки, которыми являются:

– необходима индивидуальная градуировка термопары для произведения высокоточного измерения температуры (до ±0,01 °С);

– нелинейная зависимость термоЭДС от температуры. Возникают проблемы при выработке вторичных преобразователей сигнала;

– в результате резких перепадов температур появляются термоэлектрические неоднородности, напряжения, вызванные механически;

– появляется эффект «антенны» при значительной длине термопарных и удлинительных проводов, для уже существующих электромагнитных полей.

Литература:

  1. Бубенчиков А.А., Николаев М.И., Киселёв Г.Ю., Есипович Н.В., Феофанов М.К., Шкандюк Д.О. Возможность применения солнечной энергии на территории России и Омской области // Современная наука и практика. — 2015. — № 4 (4). — С. 85-89.
  2. Рогельберг И.Л. Сплавы для термопары: справочное издание / И.Л. Рогельберг, В.М. Бейлин. — М.: Металлургия, 1983. — 360 с.
  3. Сосновский Л.Г. Измерение температур / Л.Г. Сосновский, Н.И. Столяров. — М.: Издательство комитета стандартов, мер и измерительных приборов, 1970. — 260 с.
  4. Крамарухин Ю. Е. Приборы для измерения температуры / Ю. Е. Крамарухин. — М.: Машиностроение, 1990. — 208 с.
  5. Крамарухин Ю.Е. Общий курс физики.Т.3. Электричество / Ю.Е. Крамарухин. — М.: Наука, 1977. — 704 с.
  6. Куритнык И.П. Материалы высокотемпературной термометрии / И.П. Куритнык, Г.С. Бурханов, Б.И. Стаднык. — М.: Металлургия, 1986. — 205 с.
  7. Журавлева Л.В. Электроматериаловедение / Л. В. Журавлева— М.: ПрофОбрИздат, 2001. — 312 с.
  8. Вольфкович С.И. Методы и процессы химической технологии / С.И. Вольфкович, Н.М. Жаворонков, И.А. Поспелов. — Москва-Ленинград: «Академия наук СССР», 1955. — 234 с.
  9. Дерягин Б.В. Поверхностые силы / Б.В. Дерягин, Н.В. Чураев, В.М. Муллер. — М.: Наука, 1985. — 389 с.
  10. Лущейкин Г.А. Полимерные электреты / Г.А. Лущейкин. — М.: «Химия», 1976. — 224 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
термопреобразователь
солнечный коллектор
измерение температуры
Молодой учёный №28 (132) декабрь 2016 г.
Скачать часть журнала с этой статьей(стр. Т.2. 81-84):
Спецвыпуск Омского государственного технического университета (стр.1-89)
Расположение в файле:
стр. 1стр. Т.2. 81-84стр. 89

Молодой учёный