Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Исследование процесса цифровой обработки сигнала при работе с алгоритмом быстрого преобразования Фурье

Технические науки
03.02.2016
1991
Поделиться
Аннотация
Проведена оценка преобразования Фурье на примере цифровой обработки сигналов, построены графики и смеси сигнала с шумом, исследован спектр сигнала.
Библиографическое описание
Матвеев, Д. В. Исследование процесса цифровой обработки сигнала при работе с алгоритмом быстрого преобразования Фурье / Д. В. Матвеев, А. И. Смирнов, К. Ф. Латыпов. — Текст : непосредственный // Молодой ученый. — 2016. — № 3 (107). — С. 141-145. — URL: https://moluch.ru/archive/107/25850.

 

Проведена оценка преобразования Фурье на примере цифровой обработки сигналов, построены графики и смеси сигнала с шумом, исследован спектр сигнала.

Ключевые слова: дискретное Преобразование Фурье, спектр сигнала, белый шум, импульс.

 

Преобразование Фурье стало мощным инструментом, применяемым в различных научных областях. В некоторых случаях его можно использовать как средство решения сложных уравнений, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии. В других случаях оно позволяет выделять регулярные составляющие в сложном колебательном сигнале, благодаря чему можно правильно интерпретировать экспериментальные наблюдения в астрономии, медицине и химии.

Быстрое преобразование Фурье (БПФ, FFT) — алгоритм быстрого вычисления дискретного преобразования Фурье (ДПФ). То есть, алгоритм вычисления за количество действий, меньшее чем , требуемых для прямого (по формуле) вычисления ДПФ. Иногда под БПФ понимается один из быстрых алгоритмов, называемый алгоритмом прореживания по частоте/времени или алгоритмом по основанию 2, имеющий сложность . [1]

http://www.dsplib.ru/content/thintime/thintime_html_1db17868.gif

Рис. 1 Схема БПФ по основанию 2 с прореживанием по времени

 

Основой алгоритма, как видно по рис. 1, является «ДПФ N=2», именуемое операцией «Бабочка» [2], формула которой имеет следующий вид:

Y_1 = X_1 + X_2 \cdot W

Y_2 = X_1 - X_2 \cdot W(1)

где

Операция проста в реализации, но именно она определяет скорость работы алгоритма БПФ.

Алгоритм БПФ имеется во всех современных программных средах для решения технических задач. Например, в пакете прикладных программ MATLAB имеется готовая функция FFT. Её мы и будем использовать в данной работе.

Для того, чтобы оценить влияние широкополосного шума на спектр сигнала, используем следующий код в MATLAB:

clear all% Очистка памяти

Tm=5;% Длина сигнала (с)

Fd=512;% Частота дискретизации (Гц)

A1=1;% Амплитуда первой синусоиды

F1=13;% Частота первой синусоиды (Гц)

An=3*A1;% Дисперсия шума (Попугаев)

FftL=1024;% Количество линий Фурье спектра

T=0:1/Fd:Tm;% Массив отсчетов времени

Noise=An*randn(1,length(T));% Массившума

Signal=A1*sind((F1*360).*T);% Массивсигнала

FftS=abs(fft(Signal,FftL));% АмплитудыпреобразованияФурье

FftS=2*FftS./FftL;% Нормировка спектра по амплитуде

FftS(1)=FftS(1)/2;% Нормировка постоянной составляющей

FftSh=abs(fft(Signal+Noise,FftL));%FFT для смеси сигнал+шум

FftSh=2*FftSh./FftL;% Нормировка спектра по амплитуде

FftSh(1)=FftSh(1)/2;% Нормировка постоянной составляющей

subplot(2,1,1);% Выбор области окна для построения

plot(T,Signal);% Построение сигнала

title('Сигнал');% Подпись графика

xlabel('Время (с)');% Подпись оси х графика

ylabel('Амплитуда');% Подпись оси у графика

subplot(2,1,2);% Выбор области окна для построения

plot(T,Signal+Noise);% Построение смеси сигнал+шум

title('Сигнал+шум');% Подпись графика

xlabel('Время (с)');% Подпись оси х графика

ylabel('Амплитуда');% Подпись оси у графика

F=0:Fd/FftL:Fd/2-1/FftL;% Массив частот

figure% Создаем новое окно

subplot(2,1,1);% Выбор области окна для построения

plot(F,FftS(1:length(F)));% Построение спектра Фурье сигнала

title('Спектр сигнала');% Подпись графика

xlabel('Частота (Гц)');% Подпись оси х графика

ylabel('Амплитуда');% Подпись оси у графика

subplot(2,1,2);% Выбор области окна для построения

plot(F,FftSh(1:length(F)));% Спектр сигнала+шума

title('Спектр сигнала');% Подпись графика

xlabel('Частота (Гц)');% Подпись оси х графика

ylabel('Амплитуда');% Подпись оси у графика

 

В результате получаем следующие графики:

Рис. 2. График сигнала (наверху) и смеси сигнала и шума (внизу)

 

Рис. 3. Спектр сигнала (наверху) и спектр смеси сигнала и шума (внизу)

 

Из полученных графиков видно, что несмотря на то, что полезного сигнала не видно на фоне шума, спектральная характеристика позволяет определить его частоту и амплитуду. Таким образом, преобразование Фурье устойчиво к белому шуму и позволяет выделить полезный сигнал на фоне весьма значительной помехи.

Рис. 4. Сигнал с неполным числом периодов (наверху) и полным (внизу)

 

Рис. 5. Спектры сигналов с рис. 4

 

Мы наблюдаем заметное расширение для 1-го сигнала (с неполным числом периодов). Причина этого в том, что мы задаем сигнал, ограниченный во времени, а для преобразования Фурье этот сигнал «продолжается» и считается непрерывным. Проиллюстрировать это следует так, как показано на рис. 6

Рис. 6

 

Скачок, выделенный на рисунке 6 и дает расширение спектра. Следует отметить, что этот скачок не приводит к появлению высокочастотной составляющей спектра, а напоминает по форме спектр импульса.

Таким образом можно сделать вывод о том, что при одинаковой частоте, но разном количестве временных отсчетов, мы получим аналогичное искажение спектра сигнала.

 

Литература:

 

  1.                Ряды Фурье. Интегралы Фурье. Преобразование Фурье: учебно-методическое пособие / сост.: Н. П. Семенчук, Н. Н. Сендер; Брест. Гос. Ун-т имени А. С. Пушкина. — Брест: БрГУ, 2011. — 42 с.
  2.                Колмогоров А. Н., С. В. Фомин. Элементы теории функций и функционального анализа. М.: Наука, 1981, 544 с.
  3.                Scientific American, Издание на русском языке, № 8 Август 1989 с. 48–56.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №3 (107) февраль-1 2016 г.
Скачать часть журнала с этой статьей(стр. 141-145):
Часть 2 (cтр. 123 - 243)
Расположение в файле:
стр. 123стр. 141-145стр. 243
Похожие статьи
Реализация алгоритмов дискретного преобразования Фурье на языке программирования Python
Алгоритмы преобразования Фурье и их применение при анализе звуковой информации
Применение алгоритма быстрого преобразования Фурье в системах широкополосного радиомониторинга
Анализ нестационарных сигналов с помощью вейвлет-преобразования
Исследование несинусоидальных периодических цепей переменного тока в различных программных средах
Использование метода Фурье для решения смешанной задачи для гиперболической системы
Преобразование Фурье как основополагающий частотный метод улучшения изображений
Контроль структуры магнитного поля МПФС ЛБВ методом дискретного преобразования Фурье
Анализ временных полигармонических рядов с пропусками на выходе узкополосного фильтра
Применение вейвлет-анализа для очистки речевого сигнала от шума

Молодой учёный